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Abstract

We consider the problem of communicating over a relay-assisted multiple-input multiple-output

(MIMO) channel with additive noise, in which physically separated relays forward quantized information

to a central decoder where the transmitted message is to be decoded. We assume that channel state

information is available in the transmitter and show that the design of a rational-forcing precoder—a

precoder which is matched to the quantizers used in the relays—is beneficial for reducing the symbol

error probability. It turns out that for such rational-forcing precoder based systems, there is natural

tradeoff between the peak to average power ratio in the transmitter and the rate of communication

between the relays and the central decoder. The precoder design problem is formulated mathematically,

and several algorithms are developed for realizing this tradeoff. Optimality of the decoder communication

rate is shown based on a result in distributed function computation. Numerical and simulation results

show that a useful tradeoff can be obtained between the excess decoder communication rate and the

peak-average power ratio in the transmitter.

Index terms—MIMO communication, peak to average power ratio, precoder, distributed

function computation, lattices, lattice basis reduction, LLL algorithm, closest lattice point,

decision feedback equalization, successive interference cancellation.

I. INTRODUCTION

We consider a point-to-point, multiple-input multiple-output (MIMO), relay assisted commu-

nication problem in which spatially distributed relays are deployed between the transmitter and
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the receiver. Each relay node (RN) forwards quantized information to a central receiver node

(CN) over a noiseless link. The message is decoded by the CN. The combination of RNs and

the CN will be referred to as the receiver. The communication system is illustrated in Fig. 1.

Mathematically, the communication problem is modeled by

x = Hy + z

x̂i = qi(xi), i = 1, 2, . . . , n,

ŷ = f(x̂), (1)

where H ∈ Cn×n is the channel response matrix, xi, the i-th component of x ∈ Cn is the

observation at the i-th RN, y, z ∈ Cn represent the channel input and noise, respectively,

qi : Cn → Cn and x̂i ∈ Cn represent the quantizer mapping and output, respectively, and

f : Cn → Cn, ŷ represent the receiver mapping and output respectively. The channel input, or

equivalently, modulator output y is assumed to take values in a modulation signal set with a

finite number of modulation signals. H is assumed known precisely at the transmitter. The noise

vector z is assumed to be independent of y. We emphasize that the CN estimates y based on

x̂, the quantized RN observations.

There are two distinct communication rates associated with this system, (i) the payload data

rate, which is determined by the size of the modulation signal set, and (ii) the RN to CN

communication rate, referred to as the decoder communication rate, which is determined by the

quantizers deployed in each RN, in particular by the step size of a quantizer, if the quantizer is

uniform. From information theoretic arguments, the decoder communication rate must exceed

the payload data rate, in order to decode correctly. One of the objectives of this paper is to ensure

that the difference between the decoder and payload rate is small. In this paper this difference is

referred to as the excess decoder communication rate and is defined more precisely in Sec. IV-B.

A potential application of the above model is to relay backhaul enhancement systems which

have been studied for improving cell-edge performance on the downlink in cellular systems, [28], [24],

and are expected to be useful in rural and urban areas [28]. The link between the base-station

(BS) and relay is referred to as the backhaul link, while the link between the relay and the
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end-user is referred to as the access link. The objective of the relay is to enhance the end-to-end

link quality. Here we assume that multiple relays serve a single end-user and that the access links

are noiseless and orthogonal to one another and to the backhaul links. The setup is illustrated

in Fig. 2.

Decoding complexity is a major problem in high data rate systems since, in general, joint

decoding based on the entire x̂ is required in the CN. In order to manage the decoding complexity,

several equalization strategies have been proposed and adopted in practice, most notably the

VBLAST strategy which applies equalization in the receiver [12], [31]. In cases where the

channel is known at the transmitter, the equalization strategy may take the form of a linear

precoder [8], [29], [16]. A linear precoder S ∈ Cn×n, maps an information vector b ∈ Cn to

the modulated signal y according to y = Sb in such a way that C = HS is a lower triangular

matrix with ones on the main diagonal. With such a precoding matrix, the channel output is

given by

x = Cb + z. (2)

Consider for now, the situation where the CN has direct access to the RN inputs. Since

xi = bi +
i−1∑
j=1

ci,jbj + zj, j = 1, 2, . . . , n, (3)

decoding of bi can proceed sequentially in the order i = 1, 2, . . . , n, dramatically reducing the

decoding complexity, but with a loss in coding gain. This approach to equalization and decoding

is known as decision feedback equalization (DFE). Here, as in prior works [8], [6], we will

assume that bi ∈ Z[ι], where Z[ι] is the set of complex integers, i.e. complex numbers with

integer-valued real and imaginary parts (ι =
√
−1).

In this work, the CN has access only to quantized observations of the RNs. We show that

knowledge of the quantizers qi can be exploited to design better precoders S (and thus C), and

we construct design algorithms, and quantify the improvements that can be obtained.

On a more theoretical level this work studies a natural consequence of applying in a MIMO

system, a recently developed communication efficient method for decoding a lattice code, [3], [4],

and shows that it leads to an interesting tradeoff between communication complexity and peak-
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average power ratio (PAPR). Such communication efficient methods have their origins in dis-

tributed function computation (DFC) problems [30], [22]. We emphasize that communication

complexity is well-studied in the DFC literature, but PAPR is purely a wireless concept.

A comprehensive discussion of strategies for reliable communication for the MIMO channel

can be found in [29], [16]. Methods that apply a unitary transformation in the transmitter and

DFE in the receiver are in [5], [21], [19], [29]. Most relevant to our work is a method proposed

in [29], which uses decoder communication efficiently. We note that application of a unitary

transformation in the modulator increases the PAPR, a fact that is also well known in OFDM

systems [23], [17], [2], [7], [8]. In order to reduce the PAPR, methods that apply a unitary

transformation in the decoder are proposed in [8], [29]. We note that Tomlinson-Harashima-

Miyakawa (THM) precoding [27], [14], though invented in a different context (for inter-symbol

interference channels), plays an essential role in these strategies, and will continue to do so in

our work. Methods for improving the error probability in DFE receivers, through better basis

selection are in [31], [6] and [10], where lattice reduction methods are shown to result in diversity

gains on a fading channel.

A. Contributions of this Work

Our main contributions in this work are the following:

1) We show, through an error probability analysis, that rational-forcing precoders i.e. pre-

coders designed such that the receive lattice generator matrix has rational entries, matched

to the quantizer step sizes used by the RNs, are useful for achieving low error probability

at a small decoder communication rate.

2) We show that a rational-forcing precoder leads in a natural way to a tradeoff between the

RN-CN communication rate and PAPR in the transmitter.

3) Algorithms for computing rational-forcing precoder matrices are presented and achievable

performance is presented through numerical calculations.

4) We show the information theoretic optimality of our proposed decoder communication

strategy based on a known lower bound from the distributed function computation literature.

5) We show that receive lattice generators which are unimodular result in zero excess com-
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munication cost. Identity matrices lie in this class, but the surprise here is that unimodular

non-diagonal matrices lead to strict improvements in performance over identity matrices.

II. OUTLINE OF THE PAPER

Mathematical notation, definitions and some background material is in Sec. III. The system

that we will work with is presented in Sec. IV. Quantization methods adopted in the RN’s

are described and expressions describing their impact on the error probability are developed in

Sec. IV-A. Also, the excess decoder communication rate is defined. These calculations point to

the useful nature of rational-forcing precoders (defined in Sec. IV-C) designed to achieve specific

structured forms for the receive lattice. Algorithms for constructing precoders that trade excess

decoder communication rate for PAPR are in Sec. V. Numerical computations and simulations

are in Sec. VI, and the paper is summarized and conclusions are drawn in Sec. VII. A general

result about the impact of quantization noise on the error probability is in App. B. Information

theoretic optimality of the method of quantization described in Sec. IV-A is shown in App. C.

Some specific matrices, included for repeatability purposes are in App. D.

III. MATHEMATICAL NOTATION AND PRELIMINARIES

For the mathematical development that follows we will use the following notation. For x ∈ R,

let bxc to denote the greatest integer less than or equal to x (also referred to as rounding down),

and [x] to denote the nearest integer to x. Specifically, [x] = bx + 1/2c. Thus [1.5] = 2 and

[−1.5] = −1 or, equivalently, if [x] = m, then m − 1/2 ≤ x < m + 1/2. The fractional part

of z ∈ R is defined by {z} = z − [z], −1/2 ≤ {z} < 1/2.
√
−1 will be denoted by ι. If

x is complex-valued, then bxc, [x] and {x} apply the corresponding operation independently

to the real and imaginary parts. The set of complex integers, i.e. complex numbers whose

real and imaginary parts are in Z is denoted Z[ι]. Matrices (vectors) will be written in boldface

uppercase (lowercase). Vectors x = (x1, x2, . . . , xn) are to be regarded as column vectors. Matrix

M† denotes the transposed conjugate of matrix M. A lower (upper) triangular square matrix

with ones on the main diagonal will be referred to as a unit lower (upper) triangular matrix. A

matrix with entries from Z[ι] is referred to as an integer matrix. A rational matrix M is one for

which dM is an integer matrix, for some finite d ∈ Z. For a vector with i repeated entries such
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as (a, . . . , a︸ ︷︷ ︸
i times

, b) we will write (a(i), b). ‖x‖ is the standard Euclidean norm. A(a : b, c : d) is

the submatrix of A restricted to rows a, a+ 1, . . . , b and columns c, c+ 1, . . . , d. Traditionally,

realizations of random variables are denoted by a lower case version of the random variable. For

notational simplicity, we will not make an explicit distinction between a random variable and its

realization—this should be obvious from the context. The expected value of random variable x

is denoted E[x] and the probability of an event A is denoted Prob(A). Suppose random variable

x = xr+ ιxi is such that xr, xi ∼ N (0, σ2) are independent, then we say that x ∼ N (0, σ2). The

standard complementary error function is erfc(x) = (2/
√
π)
∫∞
x
e−t

2
dt. By a = b (mod m), for

a, b,m ∈ Z, we mean a ∈ {0, 1, . . . ,m − 1} and a − b is divisible by m. A rectangular subset

of Cn is a set of the form {x ∈ Cn : ai ≤ Re(xi) ≤ bi, ci ≤ Im(xi) ≤ di, i = 1, 2, . . . , n}.

A. Peak-Average Ratio

For n× n complex-valued matrix Q, let

||Q||∞ = max
1≤i≤n

n∑
j=1

|q(i, j)| (4)

denote its maximum row-sum matrix norm (also called the ∞-norm) [15]. Let y = Qx. The

peak-to-average power ratio (PAPR) is defined as [11], [7]

γ =
max1≤j≤n |yj|
E[‖y‖2/n]1/2

.

If Q is unitary and the real and imaginary parts of x are uniformly distributed on [−A/2, A/2]n,

then E‖y‖2 = E‖x‖2 = nA2/6 , and γ =
√

3/2||Q||∞. Thus it will suffice to define the

peak-average power ratio by

γ = ||Q||∞. (5)

B. Lattices

A lattice Λ ⊂ Cn with generator matrix C ∈ Cn×n, is the set {Cb, b ∈ Z[ι]n}. We will

assume that C has full rank.
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The objective of the closest vector problem (CVP) for a lattice is to solve

b̂ = arg min
u∈Z[ι]n

|| x−Cu ||2 (6)

for a given x ∈ Cn. Since the CVP is NP-hard, an approximate solution, referred to as the Babai

point is often computed [1]. In the special case where C is a unit lower triangular matrix, the

Babai point b̂ is obtained by solving1

b̂m =

[
xm −

m−1∑
l=1

cm,lb̂l

]
, (7)

in the order m = 1, 2, . . . , n. For a MIMO communication system with channel H, suppose a

precoder S is chosen such that HS = C is unit lower triangular. The maximum likelihood of

estimate of b based on x = HSb+z, where z ∼ N (0, σ2), is given by (7). Thus DFE decoding

is equivalent to computation of the Babai point.

Definition 1 (Receive Lattice). The lattice at the output of the channel, in the absence of channel

noise, is called the Receive Lattice.

Thus HS is a generator for the receive lattice, corresponding to precoder S and channel matrix

H in (2).

IV. SYSTEM DESCRIPTION

The system that we work with has already been described already in (1). From here on we

will assume that the i-th component of the received vector x is quantized at the i-th RN with a

uniform threshold quantizer and sent to the CN. The justification for using a uniform threshold

quantizer will become clear when we analyze the error probability later in this section. The

channel matrix H is known at the transmitter (full CSI). It is also assumed that bi, the i-th

component of the information vector b has real and imaginary parts in the set {0, 1, . . . , ai−1},

for some integers ai, i = 1, 2, . . . , n. Thus b is restricted to a rectangular subset B ⊂ Z[ι]n.

Our objective is to construct a precoding matrix S such that (i) a DFE decoder can be

implemented in the CN (for managing the decoder complexity) (ii) the transmit power is as

1Recall that [x] is x rounded to the nearest integer.
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small as possible, and, (iii) the error probability Pe is as small as possible, given that the

CN has access to quantized information from the RN. We will see that our precoder setup has

sufficient flexibility to allow us to satisfy one additional design constraint, namely, (iv) minimize

the PAPR at the transmitter.

We address items (i)-(iii) and provide an explanation for item (iv) in the remainder of this

section. The design issue raised in item (iv) is addressed in Sec. V, where we will see that a

natural tradeoff exists between the amount of communication between the RNs and the CN and

the PAPR.

We have already seen that in order to satisfy condition (i) S should be chosen such that the

generator matrix of the receive lattice,

C = HS (8)

is a unit lower triangular matrix.

With reference to condition (ii), we note that since b is assumed to be in a rectangular subset

of Cn, the set {Sb, b ∈ B} will in general be a skewed and rotated parallelepided, which results

in an increased transmit power. Thus, the linear map S should not be implemented directly. This

situation is rectified by using a Tomlinson-Harashima-Miyakawa (THM) precoder [27], [14],

which effectively computes a modified information vector b′ based on b. The mapping between

b and b′ is one-one and invertible. Let the QR factorization of S give S = QR, where Q is

unitary and R is upper triangular with real entries on the main diagonal. Further, let R = MV,

where M is a diagonal matrix with real entries and V is unit upper triangular. In terms of the

modified information vector b′, the transmitted vector y is given by

y = QMVb′. (9)

The THM precoder ensures that w = MVb′ lies in a rectangular region, specifically, the real

and imaginary parts of each component of w lie in the interval [−A/2, A/2]. Since Q is unitary

and upon assuming that a uniform distribution for the real and imaginary parts of each wi, the

transmitted energy per signaling interval is E[‖y‖2] = E[‖w‖2] = nA2/12. Note however, that

the set Qw is a rotated hyper-rectangle, which leads to an increase in PAPR for non-trivial
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Q. This explains item (iv) above. Implementation details of the THM precoder are provided in

App. A. The associated processing chain is illustrated in Fig. 3, where we use the notation V

to denote a THM implementation of V. Finally we note that the payload data rate per signaling

interval is for large A well approximated by n log2A+ log2 | det H|.

Definition 2. A precoder S for which C = HS is a rational matrix is called a rational forcing

precoder.

In order to satisfy condition (iii), it is beneficial to match the precoder to the quantization in

the RN, more specifically, to design S to be rational-forcing, such that the off-diagonal rational

entries of C have denominators determined by the quantizer step size. This result is developed

next, in Sec. IV-A. Optimality of the quantization method for a given rational C, a dual result,

is shown in App. C.

A. Quantization in the RN and its Impact on the Error Probability

From (1), (8) and (31), the received signal at the RNs is x = Cb′+ z where C which is unit

lower triangular by design. Thus

xi = b′i +
i−1∑
j=1

ci,jb
′
j + zi, i = 1, 2, . . . , n. (10)

In our setup, xi, the observation at the ith RN, is quantized with a uniform quantizer. Entropy

coded bin indices are then sent to the CN. In particular, we assume that the ith RN uses a

quantizer step size 1/s1 = 1 and 1/si, i = 2, 3, . . . , n, where si an integer. The CN then

estimates the data vector b based on x̂ = (x̂1, x̂2, . . . , x̂n), where x̂i is the quantized estimate of

xi available in the CN.

We now show that precoder design matched to the quantizer results in reduced symbol error

probability. Towards this end we consider two cases: (i) C is a unit lower triangular matrix, (ii)

C is a rational unit lower triangular matrix with entries matched to the quantizer step sizes 1/si.

Assume that the CN starts decoding b′i in the order i = 1, 2, . . . , n. We calculate the conditional

error probability

Prob
(
b̂′i = b′i|b̂′j = b′j, j = 1, 2, . . . , i− 1

)
July 18, 2021 DRAFT



10 IEEE TRANSACTIONS ON COMMUNICATIONS

in the above two cases. Let νi be the quantized value sent from the ith RN to the CN and let

t =
∑i−1

j=1 ci,jb
′
j be the interference. For the purposes of the analysis that follows it suffices to

work with the real or the imaginary parts of νi and t. In order to keep the notation simple, we

will assume that νi and t are real and that the noise variable zi ∼ N (0, σ2) is real-valued as

well.

(i) Let the ith RN send νi = [sxi] to the CN. Let t =
∑i−1

j=1 ci,jb
′
j . Then given previous correctly

recovered data, the maximum-likelihood estimate of b′i at the CN is obtained by rounding

νi − st
s

=
[s(b′i + t+ zi)]− st

s

= b′i +
[s(t+ zi)]− st

s

= b′i +
1

s
([s(t+ zi)]− s(t+ zi)) + zi

= b′i + zi −
{s(t+ zi)}

s
. (11)

Note that the interference t is present in the noise term in the above equation. Since {s(t+zi)}/s

is to a good approximation independent of zi and uniformly distributed on [−1/2, 1/2), it follows

by conditioning on the on the event {s(t + zi)}/s = α that the error probability in recovering

b′i is given by ∫ 1/2

1/2

(
Fzi

(
1

2
− α

s

)
− Fzi

(
−1

2
− α

s

))
dα. (12)

When zi ∼ N (0, σ2), the error probability is upper bounded by

Prob
(
|Re(zi)| <

(
1

2
− 1

2s

))
= erfc

(
s− 1

2s
√

2σ

)
. (13)

The upper bound becomes tighter as s becomes larger.

(ii) Once again let t =
∑i−1

j=1 ci,jb
′
j . However, since the entries in C are rational, t = r/s for

integer r, s, which are relatively prime to one another. If s is odd, the RN sends νi = [sxi] to

the CN. If s is even the RN sends νi = bsxic to the CN. Thus by repeating the steps in (11),

the ML estimate of b′i is now obtained by rounding

νi − st
s

= b′i +
[szi]

s
. (14)
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Notice the absence of the interference term in the noise when comparing (14) and (11). The

error probability is given by

Prob(|zi| < 1/2) = erfc
(

1

2
√

2σ

)
. (15)

Fig. 4, described in detail in Sec. VI, shows that for small s, (12) is significantly larger than

(15).

Remark 1. The above analysis shows that rational-forcing-precoders have an advantage over

precoders that do not enforce such a constraint, and lead to an interference-free noise term as

can be seen by comparing (14) and (11).

A result which shows that the error probability is not limited by the quantization noise,

provided the quantizer is suitably fine, is proved in App. B. This result is more general, but

less quantitative as compared to (13). Optimality of the quantization method described here is

proved in App. C.

B. Excess Decoder Rate Definition

We now define the excess decoder communication rate when the i-th RN uses a uniform

quantizer with step size 1/si, i = 2, . . . , n. We assume that s1 = 1. In order to do so we choose

as a baseline system, a hypothetical system where xi is known precisely in the CN. In this

system a DFE would estimate b′i by rounding to the nearest integer, i.e. the estimate obtained

would be given by

b̂′i =

[
xi −

i−1∑
j=1

ci,j b̂′j

]
, i = 1, . . . , n. (16)

Note that the baseline system effectively applies a quantizer with a step size of unity. We will

consider this to be our baseline step size.

Definition 3. The excess decoder communication rate when the i-th RN uses a uniform quantizer

with step size 1/si, i = 2, 3, . . . , n is defined as

Rdec,ex =
1

n

n∑
i=2

log2 si bits/signaling interval/RN. (17)
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C. Receive Lattice Generators with Small Communication Requirements

Definition 4. Given positive integers d2, . . . , dn, let C(d2, . . . , dn) be the set of unit lower

triangular rational matrices in which all entries in row i, real and imaginary, except on the

main diagonal, can be expressed as a rationals with denominator di, i = 2, 3, . . . , n.

If a precoder is designed such that C ∈ C(d2, . . . , dn), and if we set s1 = 1 and si = di,

i = 2, . . . , n, where the quantizer step size in the i-th RN is 1/si, it follows from (15) that

interference free decoding is achieved. For clarity we show a few examples along with their

excess communication rates when the quantizer and precoder are matched.

Example 1.

C0 = I, C1 =


1 0 0 0

−1 1 0 0

0 −1 1 0

1 2 3 1

 .

These are examples of unimodular matrices, since all entries are integer valued and all have

absolute value of determinant equal to unity. The excess decoder communication rate, Rdec,ex,

for all unit-triangular, unimodular matrices is 0 bits.

Example 2.

C =


1 0 0 0

1/2 1 0 0

1/4 1/3 1 0

1/8 1/4 1/3 1

 .

The excess communication rate is 0 for the first row, 1 bit for the second row, dlog2(12)e = 4

bits for the 3rd row and dlog2(24)e = 5 bits for the last row. The average decoder excess

communication rate, Rdec,ex is 2.5 bits.

From these examples it should be clear that if all the off-diagonal entries in the ith row of
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a rational unit lower triangular generator matrix can be written with a common denominator

of di > 0, i = 2, 3, . . . , n, then the excess decoder communication rate is upper bounded by∑n
i=2dlog2 die.

As mentioned earlier, we prove a complementary result in App. C, where we show that if

C ∈ C(d2, . . . , dn), the optimal quantizer is a uniform quantizer.

V. PRECODER DESIGN ALGORITHMS FOR PAPR CONTROL

As we have seen, implementation of our precoder involves the application of a unitary matrix

Q. As it turns out, we have some flexibility in choosing S to minimize ||Q||∞. Our objective

now is to construct a precoder matrix S such that the receive lattice generator C ∈ C(d2, . . . , dn)

and such that the QR factorization of S results in Q with small ||Q||∞. We will assume that H

is invertible, has an LU factorization, and that the rows of H have been rearranged if necessary,

using the partial pivot strategy described in [13]. Let G = H−1. Our ‘wishful’ objective is as

follows.

Objective 1. Find C ∈ C(d2, . . . , dn) such that ||Q||∞ is minimized, where Q is the unitary

matrix obtained from the QR factorization of S = GC.

Unfortunately, the problem appears to be intractable. A more tractable objective is presented

next. We explain the intuition behind this approach first. Consider the factorization S = QR,

where Q is a unitary matrix and R is upper triangular. If S is upper triangular then, Q = I, the

identity matrix, which has small ||Q||∞. Thus it may be worthwhile searching for C such that S

is approximately upper triangular. Remember however, that we are restricted in our selection of

C, but that the constraints imposed by C(d2, . . . , dn) become less stringent as we allow d1, . . . , dn

to become larger. Additional motivation comes from the continuity result [25], Thm. 3.1, which

establishes a bound on the norm of the perturbation of Q in terms of a perturbation of S, in

terms of the condition number of S. With the intuition explained, we now present our, more

tractable, objective.

Objective 2. Find C ∈ C(d2, . . . , dn) such S = GC is approximately upper triangular.
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The sense of approximation will become clearer in the algorithms that are described later.

Algorithms for obtaining C and the associated precoder S are now presented. Let the LU

factorization of the channel matrix H, result in H = LV−1, where L is unit lower triangular,

V−1 is upper triangular.

A. Algorithm A1: Direct Quantization

The first algorithm sets C to a quantized version of L.

Algorithm 1.

1) Compute the LU factorization H = LV−1, L unit lower triangular.

2) Determine C by setting ci,j = bli,jdi + 1/2c/di, 1 ≤ j < i ≤ n.

3) Apply the QR factorization to S = H−1C to get S = QR.

B. Algorithm A2: Nearest Lattice Point Algorithm

We start with a less formal description and illustrative example before providing a formal

description of the second algorithm. Our objective is determine C ∈ C(d2, . . . , dn) so that

S = GC is approximately upper triangular.

Consider the computation of ci, the ith column of C, which is of the form

ci = (0i−1, 1,mi+1,i/di+1,mi+2,i/di+2, . . . ,mn,i/dn),

where the mi,j’s are in Z[ι] and the di’s are positive integers. Our objective is to find ci such

that Gci approximates  ∗i
0n−i

 (18)

where the first i entries marked ∗ are arbitrary. The last n− i+1 entries of ci (positions i, . . . , n)

can be written as 
1

1
di+1

. . .

1
dn


︸ ︷︷ ︸

D


1

mi+1,i

...

mn,i


︸ ︷︷ ︸

m̃

. (19)
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Let

G̃ = G(i+ 1 : n, i : n)D =
(
t A

)
(20)

where the first column t is a vector of size n − i and A is of size (n − i) × (n − i). Let

m̃ = (1,m). Our objective is to solve the equation

t + Am = 0. (21)

approximately (an exact solution is not possible in general because m ∈ Z[ι]n). This can be

accomplished by solving

m = arg min
q∈Z[ι]n−i

‖t + Aq‖ . (22)

Example 3. Let

G =


−0.1250 1.4929 .6129

0.8381 −1.5975 −1.3468

0.1604 −0.2305 −0.9240


Obtain C ∈ C(2, 8).

Solution 1. First consider c1 = (1,m2,1/2,m3,1/8), the first column of C. We obtain

G̃ =

 0.8381 −0.7987 −0.1683

0.1604 −0.1153 −0.1155

 . (23)

and search for (m2,1,m3,1) to minimize∥∥∥∥∥∥
0.8381

0.1604

+

−0.7987 −0.1683

−0.1153 −0.1155

m2,1

m3,1

∥∥∥∥∥∥ , (24)

whose solution is (m2,1,m3,1) = (1, 0). Similarly for the second column c2 = (0, 1,m3,2/8), we

minimize

‖ − 0.1153− 0.1155m3,2‖ (25)
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to get m3,2 = −2 and thus C =


1 0 0

1/2 1 0

0 −2/8 1

 . Since every element in the last row of C

can be written with denominator 4, the excess communication rate, Rdec,ex is (1 + 2)/3 = 1

bit/RN which is smaller than the typical excess cost for C(2, 8) which is 4/3 bits/RN.

Algorithm 2.

1) for i = 1 to n− 1 do

2) Construct G̃, T and A as in (20).

3) Determine m by solving (22).

4) Set ci+j,i = mj,i/dj , j = 1, . . . , n− i.

5) end for

6) S = GC

7) Calculate QR factorization S = QR.

Note that in the limit as the di’s become large, C converges to the unit lower triangular matrix

L obtained by the LU factorization H = LV−1. Thus S converges to H−1L = V, which is upper

triangular, Q in the QR factorization of S converges to the identity matrix and R converges to

V. On the other hand, when di = 1, i = 2, . . . , n, C is a unit lower triangular matrix with

integer entries—thus it is unimodular. Note that I, the identity matrix lies in this class, but

the formulation allows for the possibility of other unimodular matrices to achieve zero excess

communication cost.

C. On LLL-reducedness of C

Finally, we comment about quality—in terms of LLL-reducedness [18]— of the receive lattice

generator matrices C ∈ C(d2, . . . , dn). It is now well-known [31], [10], [6] that the probability

that the SIC solution coincides with the true ILS solution is larger when C is LLL-reduced. For a

unit lower triangular matrix, C, since the Gram-Schmidt orthogonalization process starting from

the last column results in the orthogonal matrix which is the identity matrix, the well-known

conditions for being LLL-reduced reduce to
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1) |ci,j| ≤ 1/2, 1 ≤ j < i ≤ n

2) 1 + c2i+1,i ≥ 3/4

Consider C(d2, . . . , dn), for di > 0, i = 2, . . . , n. The second condition is always satisfied for

any matrix in C(d2, . . . , dn) and it is possible, using only elementary integer linear column

operations, to reduce any matrix in this set to another matrix in the same set which satisfies

the first condition, without destroying the second property. In fact, C can be LLL-reduced by

multiplication on the right with a lower triangular unimodular matrix. This LLL-reduced matrix

may then be used for decoding, without affecting the communication cost. Hence, even though

the algorithms presented are not guaranteed to find C which is LLL-reduced, an equivalent

LLL-reduced matrix can be found quite easily.

Another interesting observation is when di = 1, i = 2, . . . , n, any matrix in C(d2, . . . , dn) is

unimodular. Thus any two matrices in C1,C2 ∈ C(1(n−1)) are related by C1 = C2∆, where ∆ is

unimodular lower triangular. Since the identity matrix I ∈ C(1(n−1)), the processing chain can be

simplified from C−1HQM V to HQM V , and this solution requires no decoder cooperation.

However, as we will see in Sec. VI, significant PAPR gains are obtained.

D. Algorithm A3: Block Reduction

Our last approach for managing ||Q||∞, is to construct C in such a way that Q is approximately

block-diagonal. We consider such structured approaches here. We begin with an example.

Suppose n = 7. Partition C as follows

C =


C11 0 0

C21 C22 0

C31 C32 C33

 .

Here Cii are unit lower triangular square matrices of size 2, 3 and 2, for i = 1, 2, 3, respectively.

The upper triangular blocks have been set to zero, Cij = 0 for j > i, so the matrix is block-

unit-lower triangular. The size of the remaining blocks is thus fully determined. Let S = GC.

Our objective is to choose C in such a way that the QR factorization S = QR results in block
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diagonal

Q =


Q1

Q2

Q3

 (26)

in a limiting sense to be made more precise, where Qi, i = 1, 2, 3 are of size 2, 3 and 2, resp.

The idea is to limit ||Q||∞ by limiting the support of each row of Q.

This, too, can be accomplished through a nearest lattice point search. In more detail, suppose

Cii, i = 1, 2, 3 are some fixed unimodular unit lower triangular matrices. Then individual columns

of the submatrix C21

C31


can be obtained by minimizing∥∥∥∥∥∥

G21

G22

C11 +

G22 G23

G32 G33

C21

C31

∥∥∥∥∥∥ (27)

columnwise through a lattice point search. Similarly the columns of C32 can be obtained by

minimizing

‖G32C22 + G33C32‖ (28)

columnwise through a lattice point search. Clearly many possibilities exist for partitioning the

matrices. We do not state a formal algorithm because the steps should be obvious given the

description of Algorithm 2.

VI. NUMERICAL EXPERIMENTS

We now describe two systems for purposes of comparison, as well as the system proposed in

this work, after which experimental results are discussed.

A. Systems for Comparison

Strategy S1: Let H−1 = QR, where Q is a unitary matrix and R is triangular. Let R =

MU−1, where M is a diagonal matrix and U is unit trangular. Thus the receive lattice has
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generator matrix U = HQM. The encoder precodes the data using the precoder matrix S = QM

and the transmitted vector is y = QMb, where the i-th component of b (both the real and

imaginary parts) can assume 2bA/(2mi)c+ 1 distinct values, where mi is the absolute value of

the i-th diagonal entry of M and A is an integer chosen to control the payload data rate. The

observation of the ith RN is quantized using stepsize 1/di, and d1 = 1. The decoder in the CN

is a DFE for the receive lattice U, which operates on quantized values received from each RN.

Note that for large A, the payload data rate is approximately given by n log2(A) + log2 | det H|

and the transmit energy per signaling interval is approximately given by nA2/12. However,

unlike with the rational-forcing precoder, the resulting receive lattice generator U need not have

rational entries. Note that the measured PAPR for the matrix Q based on the channel matrix

H = H1, shown in App. D is 1.98 (we set this to 0 dB for this example).

Strategy S2: Same factorization of H as above. However, transmitter processing chain applies

R (this requires the use of THM precoding which we describe later) in the transmitter, followed

by Q. Since HQR = I, the receive lattice generator is the identity matrix. Thus the demodulator

sees n independent channels, and the excess communication cost is zero. DFE detection factors

into n independent detectors. The transmit power and payload data rate is the same as for Strategy

S1. While this strategy was proposed for a broadcast scenario in [29] and improved in [10], it

applies very well to the situation considered in this work. The PAPR is identical to the previous

case, thus 0 dB.

Strategy S3: This is the system proposed in this work, which is based on a rational forcing

precoder S, and results in the receive lattice generator matrix C = HS. Generator matrix C

has been matched to the quantizer step sizes used by the RNs. Specifically if the quantizers

step sizes are 1/s1 = 1, and 1/si, i = 2, . . . , n, si integer, then C is in C(d2, d3, . . . , dn), where

di = si, i = 2, 3, . . . , n. The factorization S = QMV as in (9) yields the encoder processing

chain QM V . The i-th component of the information vector (real and imaginary parts) is chosen

to lie in the set {0, 1, . . . , ai − 1}, where ai = 2bA/(2mi)− 1/2c+ 1, where mi is the absolute

value of the i-th diagonal entry of M and A is an integer chosen to control the payload data rate.

Note that for large A, the payload data rate is approximately given by n log2(A) + log2 | det H|

and the transmit energy per signaling interval is approximately given by nA2/12. With H = H1
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and C = C1, where H1,C1 are shown in App. D, interestingly, even at zero cooperation cost,

a PAPR of 1.49 is obtained for this example, which is smaller than that achieved by S2 and S1

by 2.4 dB. Further, S3 is able to trade communication cost for PAPR.

B. Numerical Results

Fig. 4, compares the error probability in recovering b obtained by (12) for a precoder in

which the receive lattice is a unit triangular matrix with complex entries, to the error probability

obtained using (15), which is for a rational-forcing precoder. Results are presented for quantizer

step sizes of 2−i, i = 1, 2, 3, 4, where i is the excess communication rate identified in the figure.

This figure equivalently displays the error probability for Strategies S1, S2 and S3, described in

Sec. I-A, since only S2 and S3 are based on rational-forcing precoders.

We implemented Algorithms A1-A3, in order to find C,S. We then implemented the dis-

tributed rational-forcing precoder system of Fig. 3 in software. For the nearest lattice point

search we used the MATLAB implementation of the LLL algorithm [20]. Fig. 5 shows the

tradeoff between the excess communication rate Rdec,ex and the relative PAPR, obtained for two

randomly selected channel matrices H6 and H6(block), which are shown in App. D, with n = 6.

The relative PAPR is defined to be 20 ∗ log10(γ/γb) where γ is the PAPR obtained using the

best of Algorithms A1-A3 and γb is the PAPR obtained using QR factorization of H, which

corresponds to the choice C = I. As is evident from the plots and is generally true, algorithm

A2 performs the best, but there are examples of channels matrices where the block algorithm

A3 performs slightly better at low excess communication cost. Notice also that the variability is

much smaller for algorithms A2 and A3, as compared to A1. This is true in general.

In order to give the reader a sense of the variability with different channel matrices, we plotted

histograms of the relative PAPR, for a fixed excess communication cost for 1000 examples of

randomly drawn H. Entries in H were drawn iid N (0, 1). These results are in Fig. 6. It is

interesting to note that for zero excess communication cost (leftmost pair, d = 1), small gains

in PAPR are possible as compared to the direct QR factorization of H. This result shows that

in many cases, C 6= I can result in a strict improvement in PAPR over C = I. The channel

matrices were assume to be real-valued for this experiment.
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In Fig. 7, we show simulation results obtained for the randomly selected channel matrix H8(Pe)

displayed in App. D. This plot verifies correct operation of the distributed demodulator (curves

labeled ’dfc’) by comparing results to a hypothetical CN for the same precoder (curves labeled

’c’), which has access to unquantized RN observations. As can be seen the error probabilities are

identical. In fact, the output of the centralized and distributed demodulator is identical. Curves

labeled ’q’ are for system S1, our baseline system. The output of the RN was quantized with

a uniform quantizer having stepsize 1/d, d = 1 and d = 16. We see that for d = 1, the error

probability is high. For d = 16, the error probability is comparable to the new method, but the

PAPR is significantly higher.

Finally, we investigate the effect that imprecise CSI has on system performance. Towards this

end, we assume that a system has been designed based on channel matrix H but the actual

channel is H + ∆, where ∆ is unknown to the transmitter, but is known to the receiver. More

specifically, each entry in ∆ is ±δhij , where hij is the ij entry of H, and the ± sign chosen

independently and with equal probability for each matrix entry. Two systems are investigated for

real channels with n = 4, i.e the channel matrix is of size 4× 4 and the results are presented in

Figs. 8 for noise variance σ2 = 0 and σ2 = 0.01. The first system, whose performance is in the

left hand column of each panel, is the rational-forcing precoder system in which the precoding

matrix S is based on H, and is chosen such that the receive lattice generator matrix C ∈ C(3(3)).

The second system, whose performance is shown in the right hand column of each panel, is the

baseline system presented in Sec. VI-A, in which the precoder is based on channel matrix H.

Note that in both systems, the receive lattice generator matrix is a unit triangular matrix and

A = 7. The RNs for both systems follow the same quantization strategy as before, i.e. the first

RN uses a quantizer with step-size 1 and the ith RN uses quantizer step-size 1/3, i = 2, 3, 4. In

the CN, a zero-forcing filter first restores the triangular structure of the receiver lattice generator

matrix. This is followed by a standard DFE decoder. The presented histograms of the error

probability for each system are for 100 different channel realizations, in which the entries of H

were drawn independently from a standard normal probability distribution, i.e. hi,j ∼ N (0, 1).

For each channel realization, 100, 000 transmit and noise vectors were simulated. Three different

values of δ, the relative inaccuracy, are presented in each figure, δ = 0 (top row), δ = 0.01
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(middle row), corresponding to a 1% accuracy and δ = 0.05 (bottom row) corresponding to a

5% accuracy, in the estimation of each element of H. We see that the rational-forcing precoder

is somewhat less sensitive to channel estimation errors as compared to the baseline system. Note

that sensitivity to channel estimation errors was not a design consideration for either system.

VII. SUMMARY, CONCLUSIONS AND FUTURE WORK

We have considered the problem of communicating over a relay-assisted multiple-input multiple-

output (MIMO) channel with additive noise, in which physically separated relays forward quan-

tized information to a central decoder where the transmitted message is to be decoded. We

assumed that channel state information is available in the transmitter. We have shown that

a rational-forcing precoder matched to the quantizers in the RNs is useful for reducing the

symbol error probability. This in turn has revealed a tradeoff between the decoder communication

rate and the peak-average power ratio in the transmitter. We have presented several algorithms

for constructing rational-forcing precoders. Our results have demonstrated that this approach

can offer a designer a useful tool for trading PAPR with the excess communication cost in a

distributed receiver.

An important problem for future work is that of interference management in multiple access

settings. It is simple to serve multiple users using orthogonal physical layer resources (time

or frequency), since the problem reduces to a point-to-point communication problem. When

multiple users share the air-medium in a non-orthogonal manner, interference management is

required. The techniques to be used will depend on the specific nature of the interferer, the

amount of coordination that is allowed between base-stations and the relays. Just as this paper

was based on a novel method for communication efficient computation of the Babai point,

interference management awaits the development of novel communication efficient methods

for implementing pre-coders across multiple base stations, and also communication efficient

cooperative interference cancellation methodologies at the relays.
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<latexit sha1_base64="I7Nm5JrG5T/i9ZnTs+OE1G+GWeY=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceCF48V7Ie0oWy2m3bpZhN2J2IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbG6x0nC/YgOlQgFo2ilh96IYvY07Xv9csWtunOQVeLlpAI5Gv3yV28QszTiCpmkxnQ9N0E/oxoFk3xa6qWGJ5SN6ZB3LVU04sbP5gdPyZlVBiSMtS2FZK7+nshoZMwkCmxnRHFklr2Z+J/XTTGs+ZlQSYpcscWiMJUEYzL7ngyE5gzlxBLKtLC3EjaimjK0GZVsCN7yy6ukdVH1rqru3WWlXsvjKMIJnMI5eHANdbiFBjSBQQTP8ApvjnZenHfnY9FacPKZY/gD5/MH2S6QZw==</latexit>

x̂1
<latexit sha1_base64="kO1gXNdSaNeL+0D2CiPWYnbNplI=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjOi2GXBjcsK9gHToWQymTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmApuwHW/ncrG5tb2TnW3trd/cHhUPz7pGZVpyrpUCaUHITFMcMm6wEGwQaoZSULB+uH0rvD7T0wbruQjzFIWJGQsecwpASv5w1CJKCEwweGo3nCb7gJ4nXglaaASnVH9axgpmiVMAhXEGN9zUwhyooFTwea1YWZYSuiUjJlvqSQJM0G+iDzHF1aJcKy0fRLwQv29kZPEmFkS2skinln1CvE/z88gbgU5l2kGTNLlR3EmMChc3I8jrhkFMbOEUM1tVkwnRBMKtqWaLcFbPXmd9K6a3k3TfbhutFtlHVV0hs7RJfLQLWqje9RBXUSRQs/oFb054Lw4787HcrTilDun6A+czx8ERpEL</latexit>

b
<latexit sha1_base64="arKDRgtbXmar6FyjFo5DqAzr5ls=">AAAB+nicbVBNS8NAFHypX7V+pXr0slgETyURxR4LXjxWsK3QhLLZbNqlm03Y3Sgl9qd48aCIV3+JN/+NmzYHbR1YGGbe481OkHKmtON8W5W19Y3Nrep2bWd3b//Arh/2VJJJQrsk4Ym8D7CinAna1Uxzep9KiuOA034wuS78/gOViiXiTk9T6sd4JFjECNZGGtp1b4x17gUJD2OsxyiYDe2G03TmQKvELUkDSnSG9pcXJiSLqdCEY6UGrpNqP8dSM8LprOZliqaYTPCIDgwVOKbKz+fRZ+jUKCGKEmme0Giu/t7IcazUNA7MZJFPLXuF+J83yHTU8nMm0kxTQRaHoowjnaCiBxQySYnmU0MwkcxkRWSMJSbatFUzJbjLX14lvfOme9l0bi8a7VZZRxWO4QTOwIUraMMNdKALBB7hGV7hzXqyXqx362MxWrHKnSP4A+vzB18tlAk=</latexit>

b̂
<latexit sha1_base64="VdmuNAHDxOOUnxvCrdZcBBmnU2g=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIYpcFNy4r2Ad0hpLJpG1oJhmSjDAM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O5WNza3tnepubW//4PCofnzS0zJVhHaJ5FINQqwpZ4J2DTOcDhJFcRxy2g9nd4Xff6JKMykeTZbQIMYTwcaMYGMl3w8lj2JspiirjeoNt+kugNaJV5IGlOiM6l9+JEkaU2EIx1oPPTcxQY6VYYTTec1PNU0wmeEJHVoqcEx1kC8yz9GFVSI0lso+YdBC/b2R41jrLA7tZJFPr3qF+J83TM24FeRMJKmhgiwPjVOOjERFAShiihLDM0swUcxmRWSKFSbG1lSU4K1+eZ30rpreTdN9uG60W2UdVTiDc7gED26hDffQgS4QSOAZXuHNSZ0X5935WI5WnHLnFP7A+fwBX4KRNg==</latexit>y

+

<latexit sha1_base64="XoJjPY7Nz81pt3NOzuxgKyJNeOw=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFclRlR7LLgxmUF+4DOUDKZTBuaSYYkI9Shv+HGhSJu/Rl3/o2ZdhbaeiBwOOde7skJU860cd1vZ219Y3Nru7JT3d3bPzisHR13tcwUoR0iuVT9EGvKmaAdwwyn/VRRnISc9sLJbeH3HqnSTIoHM01pkOCRYDEj2FjJ90PJowSbMXqqDmt1t+HOgVaJV5I6lGgPa19+JEmWUGEIx1oPPDc1QY6VYYTTWdXPNE0xmeARHVgqcEJ1kM8zz9C5VSIUS2WfMGiu/t7IcaL1NAntZJFPL3uF+J83yEzcDHIm0sxQQRaH4owjI1FRAIqYosTwqSWYKGazIjLGChNjaypK8Ja/vEq6lw3vuuHeX9VbzbKOCpzCGVyABzfQgjtoQwcIpPAMr/DmZM6L8+58LEbXnHLnBP7A+fwBYQeRNw==</latexit>z
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Fig. 1. System Diagram. qi(·) represents the quantizer in the i-th RN.
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Fig. 2. Application scenario: relay-enhanced downlink for communicating information from the basestation to a mobile device
(MS) with relays. The base-station to relay links are called backhaul links and the relay to-MS links are called access links.
With reference to Fig. 1 we identify the transmitter with the Base Station and the MS with the CN. Access links are assumed
to be noiseless.

V M Q + DFE
DetectorH

<latexit sha1_base64="VdmuNAHDxOOUnxvCrdZcBBmnU2g=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIYpcFNy4r2Ad0hpLJpG1oJhmSjDAM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O5WNza3tnepubW//4PCofnzS0zJVhHaJ5FINQqwpZ4J2DTOcDhJFcRxy2g9nd4Xff6JKMykeTZbQIMYTwcaMYGMl3w8lj2JspiirjeoNt+kugNaJV5IGlOiM6l9+JEkaU2EIx1oPPTcxQY6VYYTTec1PNU0wmeEJHVoqcEx1kC8yz9GFVSI0lso+YdBC/b2R41jrLA7tZJFPr3qF+J83TM24FeRMJKmhgiwPjVOOjERFAShiihLDM0swUcxmRWSKFSbG1lSU4K1+eZ30rpreTdN9uG60W2UdVTiDc7gED26hDffQgS4QSOAZXuHNSZ0X5935WI5WnHLnFP7A+fwBX4KRNg==</latexit>y<latexit sha1_base64="1L6Ki5Jrb35itM5cJkU7dGx3cVU=">AAAB8nicbVBNSwMxFHxbv2r9qnr0EiyCp7Irih6LXjxWsLWwXUo2m21Ds8mSZJWy9Gd48aCIV3+NN/+N2XYP2joQGGbeI/MmTDnTxnW/ncrK6tr6RnWztrW9s7tX3z/oapkpQjtEcql6IdaUM0E7hhlOe6miOAk5fQjHN4X/8EiVZlLcm0lKgwQPBYsZwcZKfj+UPEqwGaGnQb3hNt0Z0DLxStKAEu1B/asfSZIlVBjCsda+56YmyLEyjHA6rfUzTVNMxnhIfUsFTqgO8lnkKTqxSoRiqewTBs3U3xs5TrSeJKGdLOLpRa8Q//P8zMRXQc5EmhkqyPyjOOPISFTcjyKmKDF8YgkmitmsiIywwsTYlmq2BG/x5GXSPWt6F0337rzRui7rqMIRHMMpeHAJLbiFNnSAgIRneIU3xzgvzrvzMR+tOOXOIfyB8/kDJxyRKg==</latexit>w

<latexit sha1_base64="XoJjPY7Nz81pt3NOzuxgKyJNeOw=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFclRlR7LLgxmUF+4DOUDKZTBuaSYYkI9Shv+HGhSJu/Rl3/o2ZdhbaeiBwOOde7skJU860cd1vZ219Y3Nru7JT3d3bPzisHR13tcwUoR0iuVT9EGvKmaAdwwyn/VRRnISc9sLJbeH3HqnSTIoHM01pkOCRYDEj2FjJ90PJowSbMXqqDmt1t+HOgVaJV5I6lGgPa19+JEmWUGEIx1oPPDc1QY6VYYTTWdXPNE0xmeARHVgqcEJ1kM8zz9C5VSIUS2WfMGiu/t7IcaL1NAntZJFPL3uF+J83yEzcDHIm0sxQQRaH4owjI1FRAIqYosTwqSWYKGazIjLGChNjaypK8Ja/vEq6lw3vuuHeX9VbzbKOCpzCGVyABzfQgjtoQwcIpPAMr/DmZM6L8+58LEbXnHLnBP7A+fwBYQeRNw==</latexit>z
<latexit sha1_base64="eBiHraoY2EodswZ+DUmPjZ40QkE=">AAAB8nicbVBNSwMxFHxbv2r9qnr0EiyCp7Irih6LXjxWsLWwXUo2m21Ds8mSZMWy9Gd48aCIV3+NN/+N2XYP2joQGGbeI/MmTDnTxnW/ncrK6tr6RnWztrW9s7tX3z/oapkpQjtEcql6IdaUM0E7hhlOe6miOAk5fQjHN4X/8EiVZlLcm0lKgwQPBYsZwcZKfj+UPEqwGaGnQb3hNt0Z0DLxStKAEu1B/asfSZIlVBjCsda+56YmyLEyjHA6rfUzTVNMxnhIfUsFTqgO8lnkKTqxSoRiqewTBs3U3xs5TrSeJKGdLOLpRa8Q//P8zMRXQc5EmhkqyPyjOOPISFTcjyKmKDF8YgkmitmsiIywwsTYlmq2BG/x5GXSPWt6F0337rzRui7rqMIRHMMpeHAJLbiFNnSAgIRneIU3xzgvzrvzMR+tOOXOIfyB8/kDKKCRKw==</latexit>x

<latexit sha1_base64="PAKmk16XUiFNQmwdxLbvVRYgUuU=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsyIosuiG5cV7AOmQ8lkMm1oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDnTxnW/ncra+sbmVnW7trO7t39QPzzqapkpQjtEcqn6IdaUM0E7hhlO+6miOAk57YWTu8LvPVGlmRSPZprSIMEjwWJGsLGSPwgljxJsxigc1htu050DrRKvJA0o0R7WvwaRJFlChSEca+17bmqCHCvDCKez2iDTNMVkgkfUt1TghOogn0eeoTOrRCiWyj5h0Fz9vZHjROtpEtrJIp5e9grxP8/PTHwT5EykmaGCLD6KM46MRMX9KGKKEsOnlmCimM2KyBgrTIxtqWZL8JZPXiXdi6Z31XQfLhut27KOKpzAKZyDB9fQgntoQwcISHiGV3hzjPPivDsfi9GKU+4cwx84nz8HSJEV</latexit>

b
<latexit sha1_base64="hGNlh9kv34nPxpV1yry4VYmEOKg=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4Kokouiy6cVnBPqAJZTKZtEMnkzAzUUrsp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+YEKWdKO863tbK6tr6xWdmqbu/s7u3btYOOSjJJaJskPJG9ACvKmaBtzTSnvVRSHAecdoPxTeF3H6hULBH3epJSP8ZDwSJGsDbSwK55QcLDGOsR8kZY58F0YNedhjMDWiZuSepQojWwv7wwIVlMhSYcK9V3nVT7OZaaEU6nVS9TNMVkjIe0b6jAMVV+Pos+RSdGCVGUSPOERjP190aOY6UmcWAmi5Bq0SvE/7x+pqMrP2cizTQVZH4oyjjSCSp6QCGTlGg+MQQTyUxWREZYYqJNW1VTgrv45WXSOWu4Fw3n7rzevC7rqMARHMMpuHAJTbiFFrSBwCM8wyu8WU/Wi/VufcxHV6xy5xD+wPr8AWBKlBM=</latexit>

b̂

THM
Precoder

Fig. 3. Precoder and Receiver. The RN’s, CN and connecting links are internal to the block marked DFE Detector.
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Fig. 4. Error probability as a function of noise variance σ for Strategies S1–S3. (S1:i bit): error probability for Strategy S1
with quantizer step size 2−i. (S3:all): error probability for strategies S2 and S3 for all RN quantizer step sizes. Note that S2
and S3 use rational-forcing precoders.

Fig. 5. Tradeoff between the excess communication cost, Rdec,ex and relative PAPR for channel matrices H6 and H6(Block)
shown in App. D.

Fig. 6. Histogram of relative PAPR (dB) for n = 4, 6 based on 1000 trials. Left-right: each pair is for C ∈ C(d(n−1)), d =
1, 8, 32.

DRAFT July 18, 2021



SUBMITTED PAPER 25

Fig. 7. Comparison of error probability for a fixed channel matrix for receive lattices, C ∈ C(d(7))), d = 1 and 16. Curves
labeled (c) are for a centrally decoded system, curves labeled (dfc) are for the rational-forcing precoder and curves labeled
(q) are for the baseline system S1. For the rational-forcing precoder and S1, the quantizer in the i-th RN has step size 1/d,
i = 2, 3, . . . , n (d = 1 for i = 1). Curve labeled (theory) is from (15). Channel matrix is H8(Pe) in the Appendix C.
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Fig. 8. Imperfect CSI in the transmitter. Histogram of error probability for 100 randomly drawn channels, n = 4. Noise
variance: 0 (left panel), 0.01 (right panel). For each panel, top row : δ = 0, middle row: δ = 0.01 (1% accuracy), bottom row:
δ = 0.05. Left Column: rational-forcing precoder designed for C ∈ C(3(3)), Right column, baseline precoder. For both systems,
the quantizer step size in the first RN is 1 and in RNs 2− 4 is 1/3. Horizontal axis: log10(Pe).
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APPENDIX A

THM PRECODER: DETAILS

Relevant implementation details for the THM-precoder are presented here. THM precoding [27], [14], was origi-

nally introduced for inter-symbol interference channels, and was more recently adapted to MIMO channels [8], [29].

Recall that the precoder S is such that C = Hs is a unit lower triangular matrix and that S = QR where R is

upper triangular with real entries on the main diagonal and Q is unitary. Let R = MV, where V is unit upper

triangular and M is a diagonal matrix with real entries. Let mi be the absolute value of the ith diagonal entry of

M. From here on, the precoding for the real and imaginary parts separates, so we provide a description assuming

real values. Pick real A > 0, such that A/(2mi) is not an integer for any i. Let ai = 2bA/(2mi) − 1/2c + 1,

i = 1, 2, . . . , n.Let bi, the ith component of the data vector b, take values in the set {0, 1, . . . , ai − 1}. Thus the

payload data rate is Rpay = b
∑n
i=1 log2 aic bits/signaling interval. The THM-precoder computes

wi = (bi − aiki)︸ ︷︷ ︸
b′i

+

n∑
j=i+1

vi,j (bj − ajkj)︸ ︷︷ ︸
b′j

(29)

in the order i = n, n−1, . . . , 1, where ki is the unique integer for which wi lies in the interval [−ai/2, ai/2). Note

that b′i = bi − aiki is an integer, wi ∈ [−A/(2mi), A/(2mi)), i = 1, 2, . . . , n and w = Vb′. Note that in Fig. 3,

and also later in the text, the THM-precoder implementation of V is denoted by V .

Given wi, i = 1, 2, . . . , n, the information symbols, b′i are recovered by

b′i =

wi − n∑
j=i+1

vi,jb
′
j

 (30)

again in reverse order i = n, n− 1, . . . , 1, following which we obtain bi = b′i (mod ai).

The transmitted signal y is given by

y = QMw = QMVb′ = Sb′. (31)

Note that Mw lies in the hypercube [−A/2, A/2]n and assuming a uniform distribution on its support, the

transmitted power is 1
nE[‖y‖2] = A2/12.

APPENDIX B

ERROR PROBABILITY AND QUANTIZATION: A GENERAL RESULT

We show that under certain conditions, quantization noise does not lead to an error floor. In our distributed

receiver, the ith RN, sends a quantized version of its observation xi to the CN. Assume that the CN has available a

decoder g : Rn → Zn (this is the decoder that would have been used if the RN observation was exactly available

at the CN). It is intuitive that the quantization noise will ‘add’ to the channel noise, and thus we should expect
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to see errors even when the channel noise is negligibly small. We show, in the following theorem that this is not

the case, and that the error probability is not limited by the quantization process, provided the quantizer is suitably

fine.

Assume that each observation xi is quantized by the RN using a uniform quantizer with infinite support, and

the bin size of each quantizer is ∆. The bin index is communicated to the CN using entropy coding, say with

a Huffman code. We now study the behavior of the error probability Pe = Prob[b̂ 6= b], as the noise variance

σ2 → 0. Denote the inverse image of information vector b under the action of the decoder g by

g−1(b) = {x : g(x) = b} ⊂ Rn.

Given a set A ⊂ Rn, we use the notation Ao to denote its interior and vol(A) to denote its volume.

Theorem 1. Suppose that the decoder has the property that b ∈ g−1(b)
o for all b ∈ Zn and that vol(g−1(b)) >

v0 > 0, for some positive constant v0. Then there is a quantizer step size ∆, suitably small, such that limσ→0 Pe = 0.

Proof: There is a γ > 0 such that for any b ∈ Zn, the hypercube with vertices bi ± γ, i = 1, 2, . . . , n lies in

g−1(b)
o. Choose ∆ = γ/2. The uniform quantizer with bin size ∆ partitions Rn into cells. Mark with a ∗, every

quantizer cell which contains an information vector b ∈ Zn. The probability that the quantized channel output

corresponding to information vector b lies in the ∗-cell corresponding to b converges to 1 as σ → 0. Hence for

any quantizer step size smaller that γ/2, the CN will recover b without error in the limit σ → 0.

APPENDIX C

OPTIMALITY OF UNIFORM QUANTIZATION IN THE RNS

Earlier we had shown that if the RN’s use quantizers with step sizes s1 = 1, 1/si, i = 2, . . . , n, si positive

integers, then designing a precoder whose elements in the ith row are expressible as rationals with denominator si

results in an absence of an interference term, as seen in (14). Here we use results from the area of distributed function

computation to show the dual result, namely, if C is a unit triangular matrix then the decoder communication rate is

minimized by using an appropriately chosen uniform quantizer. For this to be true we assume that xi, i = 1, 2, . . . , n

are independent. We will assume here that the lattice generator matrix C is a rational unit lower triangular matrix.

The function that maps x to the the ith component of the Babai point is denoted f
(i)
b , and we define fb =

(f
(1)
b , f

(2)
b , . . . , f

(n)
b ). Note that fb is a composition of the maps f and qi defined in (1), specifically b̂ = fb(x) =

f(q1(x1), q2(x2), . . . , qn(xn)). Thus b̂m = f
(m)
b (x) in (7). It is shown in [22], [9], the sum rate for computing fb,

i.e. the minimum number of bits that the RNs need to send to the CN in order that the CN compute fb correctly, must

satisfy Rsum ≥
∑n
i=1HG(i)(xi|x˜i), where HG(i)(xi|x˜i) is the graph-entropy of the characteristic graph G(i) of

f
(i)
b , conditioned on (xi, i = 1, 2, . . . , i−1, i+1, . . . , n). The structure of the characteristic graphs G(i) will be de-
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scribed in more detail in the next paragraph. For simplicity, we use the notation x˜i = (x1, . . . , xi−1, xi+1, . . . , xn),

i.e. the (n− 1)-dim vector obtained by excluding xi from x. Additionally, given an (n− 1) dimensional vector y

and a scalar x, let (x→i y) be the vector obtained by inserting x into y in the ith position. Thus x = (xi →i x˜i).

We first obtain the characteristic graphs G(i) for f (i)b and show that their maximal independent sets are intervals.

From the definition [22], G(i) is a graph whose nodes are the support set for the random variable xi, (which is R)

and (x, x′) is an edge of G(i) if there is an (n− 1)-dim vector y for which f (i)b ((x→i y)) 6= f
(i)
b ((x′ →i y)).

Let us first consider G(1). Observe that since b1 = [x1], x1 is disconnected from x′1 in G(1) if and only if

both lie in the interval [(l − 1/2), (l + 1/2)) for some integer l, or equivalently (x1, x
′
1) is an edge if and only if

x1 ∈ [(l − 1/2), (l + 1/2)) and x′n ∈ [(m − 1/2), (m + 1/2)) for m 6= l. Thus, the maximal independent sets of

the graph G(1) are the disjoint intervals [(z − 1/2), (z + 1/2)), z ∈ Z and can be indexed by an integer valued

random variable Z1. Further, these intervals partition R.

Now consider the graph G(m), m > 1 and its maximal independent sets. Assume that in (7) the term∑m−1
l=1 cm,lbl is an integer multiple of r/s, where r and s are relatively prime. In order to construct the characteristic

graph G(m), we must find values of x such that [x− kr/s] = j, for every k ∈ Z. Here we will use the following

definition for the fractional part: {x} = x−bxc. Since [x− kr/s] = [x− {kr/s}]−bkr/sc and kr/s is known at

the decoder it suffices to find values of x for which [x− {kr/s}] = j for all k ∈ Z. It follows that x must satisfy

j − 1/2 + l/s ≤ x < j + 1/2

for all l such that −1/2 + l/s < 1/2. From here it follows that

j + 1/2− 1/s ≤ x < j + 1/2

which in turn gives us

sj + s/2− 1 ≤ sx < sj + s/2.

Thus for s even (odd), [x− {kr/s}] is constant independent of k if and only if bsxc ([sx]) is a constant. It follows

that (xm, x
′
m) is an edge in G(m) if and only if bsxmc 6= bsx′mc for s even and [sxm] 6= [sx′m] for s odd. These

disjoint intervals are the maximally independent sets of G(m) and they partition R.

We have thus shown that the maximally independent sets of each of the graphs G(i), i = 1, 2, . . . , n are disjoint

intervals that partition R.

Let Zi denote the collection of maximally independent sets of G(i) and let zi be a random variable which

takes values in Zi. From [22] we know that HG(i)(xi|x˜i), the conditional graph-entropy of G(i) is by definition

the minimum conditional mutual information I(zi;xi|x˜i), where the minimum is over all conditional distributions

P (zi|xi, x˜i) which satisfy
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1) the Markov condition P (zi|xi, x˜i) = P (zi|xi),

2)
∑
z∈Zi : xi∈z P (z|xi) = 1.

3) P (z|xi) = 0, if xi is not in the interval indexed by z.

Since zi is uniquely determined by xi it follows that H(zi|xi) = 0 and hence HG(i)(xi|x˜i) = min I(xi; zi|x˜i) =

H(zi|x˜i) = H(zi). Thus the minimum rate for computing the Babai point is bounded below by
∑n
i=1H(zi),

which is precisely equal to nRdec,ex/(n− 1) from (17).

APPENDIX D

MATRICES

H1 =


−0.5500 −0.8528 −0.2253 0.7411

0.8270 0.7026 1.3365 0.0944

0.4247 −0.5069 1.1926 0.5349

1.8389 1.2790 0.7321 1.2229

 , C1 =


1 0 0 0

−1 1 0 0

0 2 1 0

−3 3 3 1

 .

Re(H6) =



−0.52708 −0.02289 −0.21550 0.67585 −0.38096 0.08709

0.40223 0.27959 −0.44671 0.46192 −0.36614 0.76415

0.20768 0.19238 0.56964 0.30253 0.77867 0.08066

0.15626 −0.10246 −0.57722 −0.18397 0.42524 −0.81392

−0.50247 −0.10582 −0.01805 0.42927 −0.83168 0.11605

0.35644 0.32059 −0.07412 0.00940 −0.34596 −0.43395



Im(H6) =



−0.37826 0.57284 0.42027 0.03254 −0.38014 −0.04484

−0.38028 0.32338 0.36868 0.15508 −0.10933 −0.32468

0.61721 −0.50284 0.64718 0.65885 −0.83420 0.71394

−0.07854 −0.24704 −0.38027 0.46033 −0.24229 −0.51102

−0.37907 0.52474 −0.22465 −0.27828 −0.81634 0.54388

−0.21661 0.07476 0.12050 0.09971 0.68824 0.65266



Re(H6(block)) =



1.46153 −0.92029 −0.07365 −1.00508 0.34118 0.16772

0.52876 −0.13722 −0.01545 −0.05679 1.22040 0.13101

0.36383 −0.29326 0.67498 0.45669 −0.67056 0.26865

−0.49097 0.32702 0.26575 −0.37915 0.48261 −0.57415

−0.12887 0.20168 0.03722 0.24747 0.16994 0.69213

0.55728 0.21577 0.18936 −0.00361 −0.68836 −0.36150



Im(H6(block)) =



0.14573 0.16081 −0.21373 0.82726 0.05970 −0.29838

−0.00611 −0.98424 −0.40453 −0.44198 −0.34289 −0.73872

0.26219 −0.09613 0.15921 −0.59757 0.34099 −0.87118

−0.00603 −0.04943 −0.30453 0.03197 0.49478 −0.28369

0.16894 −0.00265 0.37323 0.03180 0.55557 −0.09078

0.46615 −0.23594 0.01049 −0.84908 0.55676 0.63640



H8(Pe) =



−0.65632 −0.09014 0.00161 −0.73252 0.63072 −0.25749 −0.60295 0.44435

−0.08795 1.00030 1.13019 −0.74737 −0.83234 0.74225 −0.02748 1.56517

−1.16431 −0.61602 1.18848 −1.12751 0.53695 −0.18663 1.09393 −0.22883

−0.81324 0.34531 −2.12999 0.64501 0.02904 −0.21989 0.75009 −0.09109

−1.54177 1.39277 0.93949 −0.05664 0.11375 −0.10148 −0.87527 0.10403

−0.92881 −2.61595 −2.01614 −0.04005 −0.40333 0.47592 1.39063 −1.93956

−0.30483 0.14573 −0.62909 1.93598 0.05903 −1.23895 −0.05763 2.07281

1.35382 −0.57728 2.51142 0.68710 −0.36337 −1.20280 −2.08635 0.83606


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