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Abstract

We present a communication-efficient distributed protocol for computing the Babai point, an ap-

proximate nearest point for a random vector X ∈ Rn in a given lattice. We show that the protocol is

optimal in the sense that it minimizes the sum rate when the components of X are mutually independent.

We then investigate the error probability, i.e. the probability that the Babai point does not coincide with

the nearest lattice point, motivated by the fact that for some cases, a distributed algorithm for finding

the Babai point is sufficient for finding the nearest lattice point itself. Two different probability models

for X are considered—uniform and Gaussian. For the uniform model, in dimensions two and three, the

error probability is seen to grow with the packing density, and we demonstrate that the densest lattice

in dimension two presents the worst error probability. For higher dimensions, we develop probabilistic

concentration bounds as well as bounds based on geometric arguments for the error probability. The

probabilistic bounds lead to the conclusion that for lattices which generate suitably thin coverings of

Rn (which includes lattices that meet Rogers’ bound on the covering radius), the error probability goes

to unity as n grows. Probabilistic and geometric bounds are also used to estimate the error probability

under the uniform model for various lattices including the An family and the Leech lattice, Λ24. On

the other hand, for the Gaussian model, the error probability goes to zero as the lattice dimension tends

to infinity, provided the noise variance is sufficiently small.
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I. INTRODUCTION

We are given a lattice Λ ⊂ Rn and a random vector of observations, X = (X1, X2, . . . , Xn) ∈

Rn. Each Xi is available at a distinct sensor-processor node (SN), which is connected by a

communication link to a central computing node (CN). The objective is to compute at the CN, the

Babai point, a well-known approximation to the nearest lattice point of X [3]. Towards this end,

the ith SN sends an approximation of Xi to the CN at a communication rate of Ri bits/sample. In

this work, we present a communication protocol for this computation and show that it is optimal

in the sense of minimizing the communication rate. We then investigate the connection between

the structure of the lattice, as determined by its generator matrix, and the communication cost, the

error probability (the probability that the Babai point does not coincide with the nearest lattice

point), and the packing density. While this connection is of independent interest, it also allows

a designer to understand situations under which any further communication for determining the

true nearest lattice point is unnecessary. Our model for distributed computation is referred to as

the centralized model and is illustrated in Fig. 1.

Fig. 1. Centralized model for distributed computation. Each sensor node (SN) encodes its observation at a finite rate and sends

it to the central compute node (CN), where the function f is to be computed. The problem is to determine the tradeoff between

communication rate and the accuracy with which the function is computed. In this work, the function is the approximate nearest

lattice point (Babai point).

We note that our problem is a special case of the general distributed function computation

problem, where the objective is to compute a given function f(X1, X2, . . . , Xn) at the CN based

on information communicated from each of the n SN’s [26]. In our case, f is the function which

computes an approximate nearest lattice point based on the nearest plane algorithm [3] and f(X)

is the Babai point.
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Interest in communication issues for the distributed computation of the Babai point, and more

generally for the nearest lattice point [32], arise in many contexts: wireless communication,

machine learning and cryptography. We briefly describe the applications next.

In MIMO wireless systems, the decoding problem is equivalent to finding a nearest lattice

point. Well-known systems such as V-BLAST prefer to find the Babai point because of the high

computational complexity of finding the nearest lattice point. Thus, distributed computation of

the Babai point is useful in distributed MIMO receivers [30]. More generally, communication

issues for channel decoding and demodulation have been studied in the context of cooperative

communications [11], [31]. For a comprehensive review of lattices in communication, see [34].

In recent years, interest has grown in communication issues related to distributed machine

learning [20]. Such problems also fit into the distributed function computation framework, and

we expect that lattice methods will eventually play an important role here.

The study of the approximate nearest lattice point is also relevant in cryptography. In fact

the nearest lattice point problem has been proposed as a basis for lattice cryptography [2],

[15], [18], [23], [28], due to its hardness [12], examples being the Goldreich-Goldwasser-Halevi

(GGH) and learning with errors (LWE) cryptosystems. Their security relies on the solution of

this problem and the nearest plane algorithm [3] is used to estimate the resistance to attack when

the received message is relatively close to the lattice point to be decoded. Our work is of interest

in understanding the communication required in a distributed lattice-based cryptosystem.

This paper is based on preliminary work presented in [4].

The following are the contributions of this paper.

• The problem of determining the communication cost for computing the Babai point in a

distributed setting is formulated as a distributed function computation problem.

• A communication efficient distributed protocol for computing the Babai point is presented.

• Optimality of the protocol is shown by evaluating the conditional graph entropy for the

problem.

• Since the Babai point is not identical to the true nearest lattice point, we evaluate the

probability that the two points differ. This probability is referred to as the error probability.

• In dimensions two and three a complete calculation of the error probability is provided. This

calculation is based on special bases for a lattice, namely Minkowski-reduced and obtuse

superbase.
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• In dimensions two and three a relation between the error probability and the packing density

of the lattice is investigated and lattices that achieve the optimum tradeoff are characterized.

• For higher dimensions, a combination of probabilistic and geometric tools are used to

understand the behavior of the error probability and its relation to the ‘sphericity’ of a

Voronoi cell of the lattice. These approaches allow us to bound the error probability for

An, Λ24, and further, to show that for lattices that result in thin coverings, in the sense that

they meet Rogers’ bound on the covering radius, the error probability goes to one as the

dimension goes to infinity for a uniform probability model.

• For the families of lattices that we have considered, our results suggest that lattices with

higher packing densities have a higher error probability. However, there is not a monotone

relationship between the communication cost and the lattice packing density.

The paper is organized as follows. Mathematical foundations, a preliminary analysis, and a

more precise problem formulation, are in Sec. II. A communication protocol and its associated

communication cost are presented in Sec. III, along with a proof of optimality. The error

probability is analyzed in Sec. IV for dimensions two and three, assuming a uniform conditional

distribution on X. An analysis of the error probability for higher dimensions and its relation to

the ‘sphericity’ of a Voronoi cell of the lattice (in terms of its covering and packing radii), is

presented in Sec. V. This analysis differs from prior sections in that it uses probabilistic tools to

overcome difficulties with multi-dimensional integration. In this section we also discuss results

about error probability when X is obtained by adding Gaussian noise to a randomly chosen

lattice point. Conclusions and future work are in Sec. VI.

II. LATTICE BASICS AND PRELIMINARY CALCULATIONS

Notations, lattice basics, error probability simplifications and a more precise problem formu-

lation are presented in this section.

A (full rank) lattice Λ ⊂ Rn is the set of all integer linear combinations of a set of linearly in-

dependent vectors {v1,v2, . . . ,vn} ⊂ Rn, called lattice basis. We can also write Λ = {V u, u ∈

Zn}, where the columns of the generator matrix V are the basis vectors v1, . . . ,vn. The matrix

A = V TV is the associated Gram matrix and the (i, j) entry of A is the Euclidean inner product

of vi and vj, which here will be denoted by vi · vj. Two matrices V1 and V2 generate the same

lattice if and only if V1 = V2U, where U is an unimodular matrix, i.e., it has integer entries and

| det(U)| = 1.
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A set F is called a fundamental region of a lattice Λ if all its translations by elements of Λ

cover Rn, i.e.,
⋃
λ∈Λ

F + λ = Rn, and the interiors of λ1 + F and λ2 + F do not intersect for

λ1 6= λ2. The Voronoi region or Voronoi cell V(λ) is an example of fundamental region and it

is defined as

V(λ) = {x ∈ Rn : ‖x− λ‖ ≤ ‖x− λ̃‖, for all λ̃ ∈ Λ},

where ‖.‖ denotes the Euclidean norm. Note that V(λ) = λ + V(0). The volume of a lattice Λ

is the volume of any of its fundamental regions and is given by vol (Λ) = | det(V )|, where V

is a generator matrix of Λ.

A vector v ∈ Λ is called a Voronoi vector if the hyperplane {x ∈ Rn : x · v = 1
2
v · v} has a

non-empty intersection with V(0). A Voronoi vector is said to be relevant (or face-determining)

if this intersection is an (n − 1)−dimensional face of V(0), here we are adopting the notation

of [8]. Observe that the hyperplane above defines a halfspace

Hv =

{
x ∈ Rn : x · v ≤ 1

2
v · v

}
,

and the Voronoi region is the intersection of Hv over all relevant Voronoi vectors v ∈ Λ.

Let Sn(r) denote the n-dimensional sphere (ball) in Rn, centered at the origin. The packing

radius rpack of a lattice Λ is half of the minimum distance between lattice points and the packing

density ∆(Λ) = vol (Sn(rpack)) /vol (Λ) is the fraction of space that is covered by balls of radius

rpack in Rn centered at lattice points. The covering radius rcov of lattice Λ is the smallest r for

which the union of spheres of radius r, centered at the lattice points, covers Rn. The thickness

of a covering is Θ = vol (Sn(rcov))/vol (Λ). A lattice with smaller Θ than another is said to

provide a thinner covering of Rn. The relation Sn(rpack) ⊂ V(0) ⊂ Sn(rcov) always holds.

The objective of the nearest lattice point problem is to find

u = arg min
u∈Zn
‖x− V u‖2,

for a given x ∈ Rn, where the norm considered is the standard Euclidean norm. The nearest

lattice point to x is then given by xnl = V u. We refer to xnl as the Voronoi point corresponding

to x.

We denote the integer and fractional parts of x ∈ R by bxc and {x}, respectively. Thus

x = bxc+ {x} and 0 ≤ {x} < 1. The nearest integer function is [x] = bx+ 1/2c.

The nearest plane (np) algorithm [3], an approach for approximating the nearest lattice point,

computes xnp, an approximation to xnl, given by xnp = u1v1 + u2v2 + . . . + unvn, where
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the computation of ui ∈ Z is described next. Note that we refer to xnp as the Babai point

corresponding to x and to the closure of the set of x mapped to y ∈ Λ by the nearest plane

algorithm as the Babai cell B(y). Babai cells are also fundamental regions for the lattice Λ, and

hence have volume | detV |. Further, Babai cells are congruent hyperrectangles in Rn.

The method for obtaining the Babai point for general lattice generators [3] is described as

follows. Let Si denote the subspace spanned by the vectors {v1,v2, . . . ,vi}, i = 1, 2, . . . , n.

Let Pi(z) be the orthogonal projection of z onto Si and let vi,i−1 = Pi−1(vi) be the closest

vector to vi in Si−1. Consider the decomposition vi = vi,i−1 + v⊥i,i−1, and let z⊥i = zi −Pi(zi).

Start with zn = x and i = n and compute ui =
[

zi·v⊥i,i−1

‖v⊥i,i−1‖2

]
, zi−1 = Pi−1(zi) − uivi,i−1, for

i = n, n− 1, . . . , 1. Here “·” stands for the usual inner product.

For an upper triangular generator matrix V, which is the case considered in this paper, the

Babai point is obtained by computing

ui =

[
xi −

∑n
j=i+1 vi,juj

vi,i

]
(1)

in the order i = n, n − 1, . . . , 1. For a triangular generator matrix, each Babai cell B(y) is an

axis-aligned rectangle and has vertices y ± |v11|/2,y ± |v22|/2, . . . ,y ± |vnn|/2. We remark

that given a lattice Λ with an arbitrary generator matrix V ∈ Rn×n we can always apply the

QR decomposition V = QR, where Q ∈ Rn×n is an orthogonal matrix and R ∈ Rn×n is an

upper triangular matrix. The matrix R, whose column vectors are a rotation of the original basis

vectors of Λ, will generate a congruent version of this lattice.

Example 1. Fig. 2 represents the Babai cells and the Voronoi cells (hexagons) for the hexagonal

lattice A2 generated by {(1, 0), (1/2,
√

3/2)} and illustrates how the np algorithm approximates

the nearest lattice point problem.

It is an important fact that the Babai cell B(0) is dependent on the choice of the lattice basis,

whereas the Voronoi cell is invariant to the choice of lattice basis. In particular, the Babai cell

even depends on the order in which the basis vectors are listed. There are previous works in the

literature, here we particularly address [15, Ch. 18], where the Babai point is obtained after LLL

basis reduction. Under the LLL assumption, the author presents upper bounds for the magnitude

of the error between the Babai point and the Voronoi point. This approach differs from what we

are presenting here, as we discuss the error in a probabilistic fashion.



7

Fig. 2. Babai and Voronoi cells for the hexagonal lattice A2

A. Error Probability

In this section we define and simplify the error probability, Pe and its complement, Pc, the

success probability. This is needed for the second of the two problems described in Sec. II-B

and for the analysis in Secs. IV and V. The error probability and its complement are defined by

Pe = 1 − Pc = Prob (Xnl 6= Xnp). Clearly Pc =
∑

y∈Λ Prob (Xnl = y,Xnp = y). We consider

two probability models.

1) Conditional Distribution Model. Given that X ∈ B(y), we assume the conditional

distribution of X−y is independent of y and that the components of X are conditionally

independent. For this model the probability that the Babai and Voronoi points coincide is

given by

Pc =
∑
y∈Λ

Prob (Xnl = y,Xnp = y|Xnp = y) Prob (Xnp = y)

=
∑
y∈Λ

Prob
(
X ∈ V(y)

⋂
B(y)|X ∈ B(y)

)
Prob (X ∈ B(y))

=
Prob (X ∈ V(0)

⋂
B(0))

Prob (X ∈ B(0))
. (2)

A special case is when X is uniformly distributed over a Babai cell, which we refer to

hereafter as the Uniform Distribution Model. Specialized to the uniform distribution this

simplifies to

Pc =
vol (V(0)

⋂
B(0))

vol (B(0))
. (3)

2) Gaussian Generative Model: Here X is assumed to be obtained through the addition of

noise to a transmitted signal vector, X = Y + Z, where Y ∈ Λ is the transmitted lattice
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vector, and Z ∈ Rn is the white Gaussian noise, N (0, σ2I). Here, Pc is the probability

that a Babai decoder and a Voronoi decoder compute the same lattice point.

Pc =
∑
y∈Λ

∑
y′∈Λ

Prob (Xnl = y′,Xnp = y′,Y = y)

(a)
=

∑
y∈Λ

Prob (Y = y)
∑
y′∈Λ

Prob
(
Z ∈ B(y′ − y)

⋂
V(y′ − y)

)
=

∑
y∈Λ

Prob (Y = y)
∑
y′∈Λ

Prob
(
Z ∈ B(y′)

⋂
V(y′)

)
=

∑
y′∈Λ

Prob
(
Z ∈ B(y′)

⋂
V(y′)

)
= Prob

(
Z ∈ B(0)

⋂
V(0)

)
︸ ︷︷ ︸

T

+
∑

y′∈Λ,y′ 6=0

Prob
(
Z ∈ B(y′)

⋂
V(y′)

)
, (4)

where in (a) we have asserted the independence of Z and Y. The second term on the

right hand side of the above equation is the probability that the Babai and Voronoi points

coincide but are incorrect. For small noise variance, the dominant term in the above sum

is T = Prob (Z ∈ V(0)
⋂
B(0)).

Note also that Pc = 1 when the basis vectors are mutually orthogonal.

As already noted, the Babai cell B(0) is dependent on the choice of the lattice basis, whereas

the Voronoi cell is invariant to the choice of lattice basis. In particular, the Babai cell depends

on the order in which the basis vectors are listed. Thus, in Sec. IV, where we evaluate the

error probability for a given generator matrix V , we determine the Babai cell for all n! column

permutations of V by applying the QR decomposition to each permutation. The error probability

is then the minimum that is obtained over all column permutations.

B. Problem Formulations

Let X ∈ Rn be a random vector with a known probability distribution and let Λ be a lattice

with a known generator matrix, V , which is upper triangular. Xi, the ith component of X is

observed at the ith SN, i = 1, 2, . . . , n. The objective is to compute the Babai point Xnl at the

CN. Towards this end, the encoder in the ith SN maps Xi to the index ji of a codeword in a

codebook Ci of size 2Ri and sends ji to the CN using Ri bits. The CN computes the Babai point

based on all the received codebook indices (j1, j2, . . . , jn). Two problems are considered.

1) Determine the minimum communication cost
∑n

i=1Ri and an optimal protocol for com-

puting the Babai point at the CN and study the dependence on the geometric structure of
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the lattice. This requires that we construct the codebooks Ci, describe the action of the

encoder at each SN and the action of the decoder at the CN.

2) Determine the error probability Pe for various lattices under the Conditional Distribution

and Gaussian Generative models and study its dependence on the packing and covering

properties of the lattice.

III. THE DISTRIBUTED BABAI PROTOCOL (DBP) AND ITS COMMUNICATION COST

We now describe the protocol DBP, by which the Babai point xnp = V u can be determined

exactly at the CN with a finite rate of transmission from SN to CN. We assume that

1) the lattice Λ has upper triangular generator matrix V , and

2) the ratio of any two non-zero entries in any row of V are rational numbers.

Define integers pml, qml > 0 and relatively prime to each other, by canceling out common

factors in vml and vmm, i.e. let pml/qml = vml/vmm. Let qm = lcm {qml, l > m}, where lcm

denotes the least common multiple of its arguments. By definition let qm = 1 if m = n or vml = 0

for all l > m. The ‘interference’ term νm is given by νm =
∑n

l=m+1 ulvml/vmm. In terms of

integer and fractional parts, νm = bνmc+ {νm}, 0 ≤ {νm} < 1 and further, {νm} is of the form

s/qm, 0 ≤ s < qm. Let Sm ⊂ {0, 1, . . . , qm − 1} be the set of values taken by {νm}qm with

positive probability. For most source probability distributions Sm = {0, 1, . . . , qm−1}. However,

in some cases, when qm is large this may not be the case. One such situation is described at the

end of Sec. III-D.

Action of the Encoder in the mth SN:

Define sm to be the largest integer s ∈ Sm for which

[xm/vmm − s/qm] = [xm/vmm]. (5)

Then the mth SN sends

ũm = [xm/vmm] (6)

and sm to the CN in the order m = n, n− 1, . . . , 2, 1 (by definition s(n) = 0).

Action of the Decoder in the CN:

The decoder computes u = (u1, u2, . . . , un) where,

um =

 ũm −
⌊∑n

l=m+1 ulvml
vmm

⌋
, fm ≤ sm,

ũm −
⌊∑n

l=m+1 ulvml
vmm

⌋
− 1, fm > sm,

(7)
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where ũm is given by (6),

fm =

{∑n
l=m+1 ulvml

vmm

}
qm,

and computation proceeds in the order m = n, n− 1, . . . , 1.

Theorem 1. (Decoder output is the Babai point) The output of the decoder coincides with the

solution u given in (1).

Proof. Rewrite (1) in terms of fractional and integer parts to get

um =

[
xm
vmm

−
{∑n

l=m+1 ulvml

vmm

}]
−
⌊∑n

l=m+1 ulvml

vmm

⌋
, m = n, n− 1, . . . , 1. (8)

The fractional part in the above equation is of the form s/qm, s ∈ Z and further, 0 ≤ s < qm.

Thus

um =

 ũm −
⌊∑n

l=m+1 ulvml
vmm

⌋
, s ≤ sm,

ũm −
⌊∑n

l=m+1 ulvml
vmm

⌋
− 1, s > sm,

(9)

where ũm is given by (6), and the computation of um is performed at the CN in the order

m = n, n− 1, . . . , 1.

A. Communication Cost of Protocol DBP

Theorem 2. (Sum rate of the protocol DBP) Assume that Xi, i = 1, 2, . . . , n are mutually

independent and identically distributed with known marginal probability distribution. The sum

rate Rsum of protocol DBP is

Rsum =
n∑
i=1

Ri =
n∑
i=1

H(Ũi, Si). (10)

As an example, suppose that X is uniformly distributed over a rectangular region [−A/2, A/2]n.

The total rate satisfies∣∣∣∣∣Rsum −

(
n log2(A)− log2 | detV |+

n−1∑
i=1

H(Si|Ũi)

)∣∣∣∣∣ ≤ 2

A

n∑
i=1

|vii|.

Further, since limA→∞H(Si|Ũi) = log2 qi for i = 1, 2, . . . , n it follows that

lim
A→∞

(Rsum − n log2A) = log2 | detV |+
n−1∑
i=1

log2 qi. (11)
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The term n log2A − log2 | detV | can be interpreted as the rate required to compute the Babai

point for a lattice Λ′ ⊂ Rn generated by orthogonal vectors {v11e1, . . . , vnnen}, where vii is the

ith element on the main diagonal of the upper triangular generator matrix V of the lattice Λ and

ei is the ith basis vector in the standard basis, i.e. the vector with 1 in the ith position and 0’s

elsewhere. Observe that the Babai cells of Λ are congruent to those of Λ′, but are not aligned

as they are in Λ′. The term
∑n−1

i=1 log2 qi in (11) is the additional communication cost because

of the misalignment of the Babai cells of Λ.

B. Communication Cost for Some Other Communication Models

In order to benchmark the communication cost of protocol DBP, we consider two other

communication models. The first is a simple model, in which all the SNs are co-located but

are separate from the CN. The second is a matched model, which allows one-time, one-way

communication from the ith SN to the lth SN with lower index, l < m, m = 2, 3, . . . , n (this

model is a natural choice because it is matched to the triangular structure of the lattice generator).

We assume a noiseless broadcast model so that a single transmission by an SN can be seen by

all the other SNs and the CN.

For the co-located model, ui is computed using (1) and u = (u1, u2, . . . , un) is sent to the

CN. The CN is thus able to recover xnp. For the matched model, the i-th SN computes ui as in

the centralized model, and broadcasts ui to lower indexed SN j and to the CN.

Under the same assumptions on the probability distribution of X as in Theorem 2, the sum

rate is H(U1, U2, . . . , Un) =
∑n

k=1H(Uk|Ul, l > k) for both models. For the case where X is

uniformly distributed over [−A/2, A/2]n, the sum rate for both models satisfies limA→∞Rsum−

n log2A = log2 | detV |. Thus the excess communication cost for the centralized model, which

is the model that we study in this paper, as illustrated in Fig. 1, is
∑n

i=1 log2 qi.

C. Optimality of Protocol DBP

We prove optimality of the protocol DBP based on a bound on the sum rate for the distributed

function computation problem from [26]. In order to make the derivation self-contained, we

first summarize the salient facts about characteristic graphs and graph entropy which play a

fundamental role in the bound derived in [26] before proceeding to derive a lower bound for

protocol DBP. Note that our bound is for continuous alphabets, and is based on a limiting form
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of the result stated in [26], for discrete alphabets. The limiting argument is self-evident and is

not presented.

Consider a function f(x1, x2, . . . , xn) : Rn → Zn, and our distributed computation setup

where xi is available at the ith SN and f is to be computed at the CN. A lower bound on

the communication rate from the ith SN to the CN is given by the minimum rate required

to compute f , assuming that xj, j 6= i is known at the receiver. We will use the notation

ic = {1 ≤ j ≤ n, j 6= i} and xic for the vector (xj, j 6= i). From [26], the minimum

communication rate is given in terms of the conditional graph entropy of a specific graph.

We now describe computation of the conditional graph entropy. For convenience we will write

f(x) = f(xi|xic), when studying the communication rate from the ith SN to the CN, to emphasize

the fact that xic is side information at the CN.

The characteristic graph, Gi, of the function f(xi|xic), has as its nodes the support of xi, which

in this case is R. Two distinct nodes xi and x′i are connected by an edge if and only if (iff) there

is an xic for which f(xi|xic) 6= f(x′i|xic). An independent set is a collection of nodes, no two

of which are connected by an edge. A maximal independent set is an independent set which is

not contained in any other independent set. The minimum rate required to compute fi(xi|xic)

with xic known at the CN is given by the conditional graph entropy HGi(Xi|Xic) [26], described

next. Let Γi be the collection of maximal independent sets of Gi and let W be a random variable

which takes the values w ∈ Γi—thus the realizations of W are maximally independent sets. Let

p(w|xi,xic) be a conditional probability distribution with the following properties:

1) p(w|xi,xic) = p(w|xi), for all w ∈ Γi,(xi,xic) ∈ Rn (Markov condition).

2) p(w|xi) = 0 if xi /∈ w.

3)
∑

w∈Γi
p(w|xi) = 1.

Let Pi be the collection of all such probability distributions. Then by definition

HGi(Xi|Xic) = inf
p∈Pi

I(W ;Xi|Xic). (12)

We now apply this machinery for obtaining a lower bound on the rate Ri for computing

u(xi|xic) =

[
xi −

∑n
j=i+1 vi,juj

vi,i

]
,

for i = n, n − 1, . . . , 1. Our goal is to determine Gi and its maximal independent sets, i =

1, 2, . . . , n, and the probability distribution that solves (12).
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First consider Gn. In Gn, xn is disconnected from x′n iff [xn/vn,n] = [x′n/vn,n] or equivalently

the maximal independent sets are the level sets of [xn/vn,n]. Since xn lies in exactly one of

these sets, it follows from item 2 and (6) that W = Ũn. Hence Rn ≥ infp∈Pn I(W ;Xn|Xnc) =

H(Ũn|Xnc), since H(Ũn|Xn) = 0.

Now consider Gm for m < n. As before, let ν =
∑n

j=m+1 vm,juj/vm,m and write ν = {ν}+bνc.

Since {ν} = s/qm, s ∈ S ⊂ {0, 1, . . . , qm − 1} it follows that xm and x′m are disconnected in

Gm iff [xm/vm,m−s/qm] = [x′m/vm,m−s/qm] for all s ∈ S ⊂ {0, 1, . . . , qm−1} or equivalently,

[xm/vm,m] = [x′m/vm,m] and the value of sm evaluated using (5) is the same for xm and x′m.

From item 2 and (6), it follows that W = (Ũm, Sm) and hence Rm ≥ infp∈Pm I(W ;Xm|Xmc) =

H(Ũm, Sm|Xmc).

Thus (recall that Sn = 0)

Rsum =
n∑
i=1

Ri ≥
n∑
i=1

H(Ũi, Si|Xic). (13)

Since the lower bound coincides with the sum rate of the protocol DBP given by (10) when the

Xi are mutually independent, DBP is optimal.

D. Examples

Fig. 3. Communication rates for 2 dimensional lattices and a uniform source distribution over the square [−5/2, 5/2) ×

[−5/2, 5/2). The basis vectors are (1, 0) and (a, b) = (1/m,
√

1 − 1/m2), with integer m ≥ 2.

In the following examples, we illustrate how the method proposed in Theorem 1 works, present

a case where the communication cost is large, and compute communication rates for a family

of two-dimensional lattices, for a uniformly distributed source.
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Example 2. Consider the three dimensional body-centered cubic (BCC) lattice with basis {(1, 0, 0),

(−1
3
, 2
√

2
3
, 0), (−1

3
,−
√

2
3
,
√

2
3
))
}
. The Babai point u = (u1, u2, u3) is given by

u3 =

[√
3

2
x3

]
, u2 =

[
3

2
√

2
x2 +

{
1

2
u3

}]
+

⌊
1

2
u3

⌋
,

and u1 =

[
x1 +

{
1

3
u2 +

1

3
u3

}]
+

⌊
1

3
u2 +

1

3
u3

⌋
.

In order for the Babai point u to be correctly calculated at the CN, nodes 2 and 1 send the

following extra information, according to the protocol DBP:

node 2:
{

1

2
u3

}
=
s2

q2

, q2 = 2 then s2 = 0 or 1

node 1:
{

1

3
u2 +

1

3
u3

}
=
s1

q1

, q1 = 3 then s1 = 0, 1 or 2.

Observe that the values of s1 and s2 are calculated for a general received vector x = (x1, x2).

Therefore, the sum rate to send s1 and s2 to the CN is log2 2 + log2 3 ≈ 2.5859 ≈ 3 bits.

Example 3. Consider a two-dimensional lattice with basis {(1, 0), ( 311
1000

, 101
100

)}. We have that

u2 =

[
x2

v22

]
=

[
100

101
x2

]
(14)

and

u1 =

[
x1

v11

−
{
u2v21

v11

}]
−
⌊
u2v21

v11

⌋
=

[
x1 −

{[
100

101
x2

]
311

1000

}]
−
⌊[

100

101
x2

]
311

1000

⌋
.

Consider, for example, x = (1, 1), then
{[

100
101
x2

]
311
1000

}
= 311

1000
= s

q
. In this case, node 1 must

send the largest integer s1 in the range {0, 1, . . . , 999} for which
[
x1 − s1

q1

]
= [x1] and we get

s1 = 500. This procedure will cost no larger than log2 q1 = log2 1000 ≈ 9.96 and in the worst

case, we need to send almost 10 bits to recover the Babai point at the CN.

Communication rates for various two-dimensional lattices are presented in Fig. 3 for a source

uniformly distributed over the square [−5/2, 5/2) × [−5/2, 5/2). The basis vectors are (1, 0)

and (a, b), a2 + b2 = 1, with a = 1/m, and integer m ≥ 2. The sum rate is seen to peak at

a = 1/6. Consider the case where m = 991. Note that u2 = [x2/b] and u1 = [x1 − au2]. The

scaled fractional interference term m{au2} takes values in S = {0, 1, 2, 3, 988, 989, 990} which

is a much smaller set than {0, 1, . . . , 990}. This observation is essential for ensuring that the

conditional entropy H(S1|Ũ1) eventually decreases as a→ 0.
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IV. ERROR PROBABILITY CALCULATIONS FOR DIMENSIONS n = 2, 3:

We have presented a protocol for computing the Babai point in a distributed network and

evaluated its communication cost. We now explore several issues related to the Babai point.

First, since the Babai point is an approximation for the nearest lattice point, it is of interest to

evaluate the probability that the two points are unequal, i.e., the error probability Pe as defined

in Sec. II-A. In this section we provide a precise analysis of Pe for the Conditional Distribution

model, specifically the Uniform Distribution model, for dimensions 2 and 3. Since the probability

that the Babai and nearest lattice point coincides is basis dependent, we will work in this section

with Minkowski-reduced basis for all lattices.

A less precise but more general analysis of Pe for general dimensions, and under both the

Conditional Distribution and Gaussian Generative model, is considered in Sec. V. Efficient

numerical computation of Pe requires that we work with special bases as defined in Sec. IV-A.

Analytic and numerical computation of Pe for n = 2, 3 is then addressed in Secs. IV-B and IV-C.

Knowledge of the error probability is useful because in some situations it might be sufficient

to compute the Babai point, and not incur the extra communication cost of finding the nearest

lattice point. We mention here that the additional cost of finding the true nearest lattice point

has been addressed in dimension two in [32].

Second, we study the variation of the error probability Pe with the packing density of the

lattice. The intuition driving this study is that as the packing density increases, the Voronoi cell

become increasingly spherical, and we should expect the error probability to increase. We see

that some well-known regular polyhedra lie on the optimal tradeoff curve between the packing

density and the error probability. Numerical evidence about the nature of polyhedra that lie on

this optimal tradeoff curve is also presented (Figs. 7 and 8).

A. Special Bases: Minkowski and Obtuse Superbase

A basis {v1,v2, ...,vn} of a lattice Λ ⊂ Rn is said to be Minkowski-reduced if vj, j = 1, . . . , n,

is such that ‖vj‖ ≤ ‖v‖, for any v such that {v1, ...,vj−1,v} can be extended to a basis of Λ.

Theorem 3. [7] (Minkowski-reduced basis from Gram matrix) Consider the Gram matrix A of

a lattice Λ. The inequalities (15), (15)–(16), and (15)–(17) below define a Minkowski-reduced
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basis for dimensions 1,2 and 3, respectively.

0 < a11 ≤ a22 ≤ a33 (15)

2|ast| ≤ ass (s < t) (16)

2|ars ± art ± ast| ≤ arr + ass (r < s < t). (17)

All lattices in Rn have a Minkowski-reduced basis, which roughly speaking, consists of short

vectors that are as perpendicular as possible [7]. In dimension two, relevant vectors can be

determined from a Minkowski-reduced basis as follows.

Lemma 1. [8] (Relevant vectors given a Minkowski-reduced basis) Consider a Minkowski-

reduced basis of the form {(1, 0), (a, b)} and let θ be the angle between (1, 0) and (a, b). Then

besides the basis vectors, a third relevant vector is(−1 + a, b), if π
3
≤ θ ≤ π

2

(1 + a, b), if π
2
< θ ≤ 2π

3
.

(18)

In dimension two, the characterization [7] for a Minkowski-reduced basis is the following:

a lattice basis {v1,v2} is Minkowski-reduced if only if ‖v1‖ ≤ ‖v2‖ and 2|v1 · v2| ≤ ‖v1‖2 .

Consequently, the angle θ between v1 and v2 is such that π
3
≤ θ ≤ 2π

3
.

We describe next the concept of an obtuse superbase that will be applied in the three-

dimensional approach.

Let {v1,v2, . . . ,vn} be a basis for a lattice Λ ⊂ Rn. A superbase {v0,v1, . . . ,vn} with

v0 = −
∑n

i=1 vi, is said to be obtuse if pij = vi · vj ≤ 0, for i, j = 0, . . . , n, i 6= j. A lattice

Λ is said to be of Voronoi’s first kind if it has an obtuse superbase. The existence of an obtuse

superbase allows a characterization of the relevant Voronoi vectors of a lattice [8, Theorem 3,

Sec. 2], which are of the form
∑

i∈S vi, where S ⊂ {0, 1, . . . , n} and S 6= ∅.

It was demonstrated [8] that all lattices with dimension less or equal than three are of Voronoi’s

first kind and given the existence of obtuse superbases for three dimensional lattices, their Voronoi

regions can be classified into five possible parallelohedra which we present in the sequel.

Given an obtuse superbase, since v0 = −v1 − v2 − v3, all relevant Voronoi vectors can be

written as one of the following seven vectors or their negatives:

v1,v2,v3,v12 = v1 + v2,v13 = v1 + v3,v23 = v2 + v3,v123 = v1 + v2 + v3.
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The Euclidean norm of such vectors N(v1), N(v2), N(v3), N(v12), N(v13), N(v23), N(v123)

are called vonorms and pij = −vi · vj (0 ≤ i < j ≤ 3) are denoted as conorms.

Remark 1. The Voronoi region of a lattice Λ ⊂ Rn with obtuse superbase {v0,v1,v2,v3} can

be classified [8] according to the five choices of zeros for their conorms, which leads to five

possible parallelohedra, as presented in Fig. 4. The characterization is based on the conorms

as follows:

• cuboid, if p12 = p13 = p23 = 0.

• hexagonal prism, if only two conorms among p12, p13 and p23 are zero.

• rhombic dodecahedron, if p01 = p23 = 0, or p02 = p13 = 0, or p03 = p12 = 0.

• hexa-rhombic dodecahedron, if only one conorm among p12, p13 or p23 is zero, and p0j are

nonzero for all j = 1, 2, 3.

• truncated octahedron, if all pij (0 ≤ i < j ≤ 3) are nonzero.

Fig. 4. The five possible shapes for a Voronoi cell of a three-dimensional lattice

Now that the Minkowski-reduced basis and obtuse superbase have been defined, we present

a relation between them.

Theorem 4. (Minkowski-reduced basis and obtuse superbase) In dimensions n = 1, 2, 3, if a

lattice Λ ⊂ Rn has a Minkowski-reduced basis {v1, . . . ,vn}, where vi.vj ≤ 0, i 6= j, then

the superbase {v0,v1, . . . ,vn} is an obtuse superbase for Λ. Conversely, if Λ has an obtuse

superbase, then a Minkowski-reduced basis can be constructed from it.

Proof. The case n = 1 is trivial, hence we will start with n = 2.

(⇒) Suppose that {v1,v2} is a Minkowski-reduced basis, then, according to Theorem 3, 0 <

v1·v1 ≤ v2·v2 and 2|v1·v2| ≤ v1·v1. Moreover, by hypothesis, v1·v2 ≤ 0. Define v0 = −v1−v2

and to guarantee that {v0,v1,v2} is an obtuse superbase, we need to check that p01 ≤ 0 and
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p02 ≤ 0. Indeed, p01 = v0 ·v1 = (−v1−v2) ·v1 = −v1 ·v1−v1 · v2︸ ︷︷ ︸
|v1·v2|

≤ −2|v1 ·v2|+ |v1 ·v2| ≤ 0.

Similarly we have that p02 ≤ 0.

(⇐) If {v0,v1,v2} is an obtuse superbase, any permutation of it is also an obtuse superbase.

So, we may consider one such that |v1| ≤ |v2| ≤ |v0|. Then we have that 0 < v1 ·v1 ≤ v2 ·v2 ≤

(v1 + v2) · (v1 + v2) and v1 6= 0. From the last inequality, we have that −2v1 · v2 ≤ v1 · v1 ⇒

2|v1 · v2| ≤ v1 · v1.

For n=3: (⇒) Consider a Minkowski-reduced basis {v1,v2,v3} such that v1 ·v2 ≤ 0,v1 ·v3 ≤ 0

and v2 · v3 ≤ 0. To check if {v0,v1,v2,v3} is an obtuse superbase, we need to verify that

p01 ≤ 0, p02 ≤ 0 and p03 ≤ 0. One can observe that

p01 = v0 · v1 = −v1 · v1−v1 · v2︸ ︷︷ ︸
|v1·v2|

−v1 · v3︸ ︷︷ ︸
|v1·v3|

≤ −v1 · v1 +
v1 · v1

2
+

v1 · v1

2
≤ 0.

With analogous arguments, we show that p02 ≤ 0 and p03 ≤ 0.

(⇐) To prove the converse, up to a permutation, we may consider an obtuse superbase such that

|v1| ≤ |v2| ≤ |v3| ≤ |v0|. This basis will be Minkowski-reduced if we prove conditions (16)

and (17) from Th. 3, i.e.,

2|v1 · v2| ≤ v1 · v1; 2|v1 · v3| ≤ v1 · v1; 2|v2 · v3| ≤ v2 · v2, (19)

2| ± (v1 · v2)± (v1 · v3)± (v2 · v3)| ≤ (v1 · v1) + (v2 · v2). (20)

The inequalities in (19) are shown similarly to the two dimensional case starting from v2 ·v2 ≤

(v1 +v2) · (v1 +v2), v3 ·v3 ≤ (v1 +v3) · (v1 +v3) and v3 ·v3 ≤ (v2 +v3) · (v2 +v3). Starting

from v3 · v3 ≤ (v1 + v2 + v3) · (v1 + v2 + v3), the inequality in (20) follows, concluding the

proof.

Characteristics of relevant Voronoi vectors of low-dimensional lattices can be found in [22].

For our application, the obtuse superbase ( [8, Th.3, Sec. 2]) leads to considerable simplification

in identifying all the relevant vectors for a Voronoi cell. For more details about low dimensional

reduced bases, see [25]. Computation of a Minkowski-reduced basis in high dimensions is a

hard problem and the basis commonly used in practice is an approximation, obtained using the

the LLL algorithm [21].
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B. Error Probability and Packing Density: Two-dimensional lattices, Uniform Distribution Model

We consider that a Minkowski-reduced lattice basis, which is also obtuse (Theorem 4) can

be chosen by the designer of the lattice code and it can be transformed into an equivalent basis

{(1, 0), (a, b)}, by applying QR decomposition to the lattice generator matrix.

From the Minkowski-reduced basis {(1, 0), (a, b)}, where a2 + b2 ≥ 1 and −1
2
≤ a ≤ 0, it

is possible to use Lemma 1 to describe the Voronoi region of Λ and determine its intersection

with the associated Babai cell. Observe that the area of both regions must be the same and in

this specific case, equal to |b|.

In addition {(−1− a,−b), (1, 0), (a, b)} is an obtuse superbase for Λ, so the relevant vectors

that define the Voronoi region are ±(1, 0),±(a, b) and ±(−1 − a,−b). We will choose for the

analysis proposed in Theorem 5 only the vectors in the first quadrant, i.e., (1, 0), (1+a, b), (a, b),

due to the symmetry of the Voronoi cell. Hence, the following result states a closed formula for

the error probability Pe := Prob (Xnp 6= Xnl) of any two-dimensional lattice.

Theorem 5. [4] (Error probability for two-dimensional lattices) Consider a lattice Λ ⊂ R2 with

a Minkowski-reduced basis {v1,v2} = {(1, 0), (a, b)}, such that the angle θ between v1 and v2

satisfies π
2
≤ θ ≤ 2π

3
. The error probability Pe, when the received vector x = (x1, x2) ∈ R2 is

uniformly distributed over the Babai cell, is

Pe = F (a, b) =
−a− a2

4b2
=

1− (1 + 2a)2

16b2
. (21)

Proof. To calculate Pe for Λ, we first obtain the vertices of the Voronoi region. This is done

by calculating the points of the intersection of the perpendicular bisectors of the three relevant

vectors (1, 0), (a, b) and (1 + a, b), according to Lemma 1, Fig. 5. The vertices that define the

Voronoi region are ±(1
2
, a

2+b2+a
2b

), ±(−1
2
, a

2+b2+a
2b

) and ±(2a+1
2
, −a

2+b2−a
2

), while the Babai cell

B(0) has vertices (±1
2
,± b

2
).

Pe is then computed as the ratio between the area of the Babai region which is not overlapped

by the Voronoi region V(0) and the area |b| of the Babai region. From Fig. 5, the error can be

written as the sum of the areas of four triangles. Two of them are defined respectively by the

points
(

1
2
, b

2

)
,
(

1
2
, a

2+a+b2

2b

)
,
(
a+1

2
, b

2

)
and

(
−1

2
, b

2

)
,
(
−1

2
, a

2+a+b2

2b

)
,
(
a
2
, b

2

)
, while the remaining

two are symmetric to these ones. Therefore, the error probability is the sum of the four areas,

normalized by the area of the Voronoi region | det(V )| = |b|. The explicit formula for it is given

by F (a, b) =
−a− a2

4b2
.
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Fig. 5. Voronoi cell, Babai cell and three relevant vectors

Corollary 1. (Error probability analysis for two dimensional lattices) For any two dimensional

lattice with a Minkowski-reduced basis satisfying the conditions of Theorem 5, we have

0 ≤ Pe ≤
1

12
, (22)

and

i) Pe = 0⇐⇒ a = 0, i.e., the lattice is orthogonal.

ii) Pe = 1
12
⇐⇒ (a, b) =

(
−1

2
,
√

3
2

)
, i.e., the lattice is equivalent to the hexagonal lattice.

iii) the level curves of Pe are described as ellipsoidal arcs (Fig. 6) in the region a2 + b2 ≥ 1

and −1
2
≤ a ≤ 0 (condition required for the basis to be Minkowski-reduced).

Remark 2. From Corollary 1, one can notice a straightforward relation between the packing

density of the lattice and its error probability. The packing density of a lattice with basis

{(1, 0), (a, b)} is given by ∆2(a, b) = π
4b

and F (a,∆2) =
∆2

2[1−(1+2a)2]

π2 , following the no-

tation from Theorem 5. For a fixed a, the error probability increases with ∆2, and for a

fixed density ∆2 and fixed b, the error probability is decreasing with a, where −1
2
≤ a ≤

min

{
−
√

1−
(

π
4∆2

)2

, 0

}
.

Indeed, if we consider the error probability for a given density ∆2, we have that F (a,∆2) is

minimized by a = a∗, where

a∗ =


0, ∆2 ≤ π

4
(b2 ≥ 1)

−
√

1−
(

π
4∆2

)2

, π
4
< ∆2 ≤ π

2
√

3
(3/4 ≤ b2 < 1).
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Fig. 6. Level curves of Pe = k, in right-left ordering, for k = 0, k = 0.01, k = 0.02, k = 0.04, k = 0.06 and k = 1/12 ≈

0.0833. Notice that a is represented in the horizontal axis and b in vertical axis.

and maximized by a = −1
2
, for any ∆2. Fig. 7 represents the minimum error probability function

F (a,∆2) for π
4
≤ ∆2 ≤ π

2
√

3
and expresses how the error probability varies with the packing

density ∆2.

0.80 0.82 0.84 0.86 0.88 0.90
PackingDensity

0.02

0.04

0.06

0.08

Error Probability

Fig. 7. Minimum error probability for given packing density assuming π
4
< ∆2 ≤ π

2
√
3
, considering a uniform distribution

C. Error Probability and Packing Density: Three-dimensional lattices, Uniform Distribution

Model

For the three dimensional case, we developed and implemented an algorithm in the software

Wolfram Mathematica, version 12.1 [33] which calculates the error probability of any three

dimensional lattice, given an obtuse superbase, by following the characterization given in [8].
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We assume an initial upper triangular lattice basis given by {(1, 0, 0), (a, b, 0), (c, d, e)}, where

a, b, c, d, e ∈ R.

It is important to remark that in dimensions greater than two, the error probability is dependent

on the basis ordering. Hence, in order to analyze the smallest error probability for a given lattice,

we relax the ordering imposed for the Minkowski-reduced basis and allow any permutation of

a basis from now on. Our algorithm searches over all orderings and determines the best one.

As an example, the performance of the BCC lattice is invariant over basis ordering, due to its

symmetries. On the other hand, for the FCC lattice, depending on how the basis is ordered,

we can find two different error probabilities, 0.1505 and 0.1667, but we choose to tabulate the

smallest one. A detailed description of the algorithm is presented in Algorithm 1.

Algorithm 1 Error probability and packing density computation, n = 3, for basis

{(1, 0, 0), (a, b, 0), (c, d, e)}.

Voronoi cell: Given an obtuse superbase, determine the vertices of the Voronoi cell V(0)

of Λ using the relevant Voronoi vectors (Sec. IV-A). Use ConvexHullMesh[] available in

Mathematica [33] to obtain the convex hull of the vertices of V(0).

Babai cell: Determine the vertices of the Babai cell B(0). Apply function ConvexHullMesh[]

to compute the convex hull of these vertices.

Intersection: Apply RegionIntersection[] in Mathematica [33], to compute B(0)
⋂
V(0) and

its volume normalized by the volume of the lattice.

Packing density: Calculate the packing density ∆3 = π
6

d3min(Λ)

vol(Λ)
.

For lattices with a randomly chosen basis, we start by considering a basis, with the format

{(1, 0, 0), (a, b, 0), (c, d, e)}, where a, c ∈ [−1/2, 0] and b, d, e ∈ [−2, 2] are chosen independently

and uniformly at random (the choice of the range is justified because we are only interested in

lattices whose packing density is greater than 0.4). Then, the program tests if this basis is an

obtuse superbase. If this condition is false, another random basis is generated until a suitable one

is found. At the end of this stage, we will have a randomly chosen obtuse and Minkowski-reduced

superbase for the lattice Λ.

Fig. 8 has points given by known lattices, together with random points (orange) that are

associated with lattices having a packing density greater than 0.4. Note that with overwhelming

probability, all orange points with a randomly chosen basis have a truncated octahedron as
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Voronoi region, which is the most general Voronoi region in three dimensions. Indeed, the

existence of a Voronoi region which is not a truncated octahedron is conditioned to at least one

pij = 0, where

p01 = 1 + a+ c, p02 = a(1 + a+ c) + b(b+ d)

p03 = c(1 + a+ c) + d(b+ d) + e2,

p12 = a, p13 = c, p23 = −ac− bd,

for the selected parameters a, b, c, d and e. Since these equations correspond to a set of measure

zero in the 5D parameter hyperbox [−1/2, 0] × [−2, 2] × [−1/2, 0] × [−2, 2] × [−2, 2], this

probability is negligible.
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Fig. 8. Plot of error probability and packing density for n = 3, (left) known and randomly chosen (orange points) lattices,

(right) best points obtained from a grid search and the parametric representation.

The circular points in Fig. 8 are respectively described as: in red, the cubic lattice Z3 with basis

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}; in green, the lattice Λhp with basis {(1, 0, 0), (−1
2
,−
√

3
2
, 0), (0, 0, 1)},

whose Voronoi region is a regular hexagonal prism; in blue, the body-centered cubic lattice with

basis {(1, 0, 0), (−1
3
, 2
√

2
3
, 0), (−1

3
,−
√

2
3
,
√

2
3
)}, whose Voronoi region is a truncated octahedron;

in black, the face-centered cubic lattice with basis {(1, 0, 0), (−1
2
,−1

2
, 1√

2
), (0, 1, 0)}, whose

Voronoi region is a rhombic dodecahedron; in purple, the lattice Λhrd with basis {(1, 0, 0),

(− 1√
5
, 2√

5
, 0), (0,−1

2
,
√

5
2

)}, whose Voronoi region is a hexa-rhombic dodecahedron. Table I

summarizes their performances when we run Alg. 1.

Fig. 8 also presents some particular cases (square points), where the numerical random search

led to a Voronoi region different than the general truncated octahedron. The color corresponds
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TABLE I

PERFORMANCE IN ALGORITHM 1 FOR KNOWN LATTICES

Lattice/Voronoi cell Notation 15.6 [7] ∆3 Pe

Z3/ Cuboid 111 0.5235 0

Λhp/ Hexagonal prism 2−122 0.6046 0.0833

FCC/ Rhombic dodecahedron 21212 0.7404 0.1505

Λhrd/ Hexa-rhombic dodecahedron 21312 0.5235 0.1134

BCC/ Truncated octahedron 31313−1 0.6802 0.1458

to the cell type, i.e., green is an hexagonal prism, purple are hexa-rhombic dodecahedrons, and

black represents rhombic dodecahedrons.

D. Analysis of the Data and Observations

Let Pe and ∆3 be the error probability and packing density for a lattice Λ. Consider the curve

P ∗e (∆), the lower boundary of the set of points (∆3, Pe) obtained by minimizing Pe subject to

the constraint ∆3 ≥ ∆. Our interest is in finding a parametric form for the three-dimensional

lattices that achieve points on this boundary. Observe that P ∗e (∆) = 0, for ∆ ≤ π/6, where π/6

is the packing density for the cubic lattice in three dimensions. In fact lattices with densities

strictly smaller than π/6 and error probability equal to zero can be obtained by rectangular (i.e.

cuboidal) lattices. However, since Pe = 0 is already achieved at the packing density π/6, we

need only consider ∆ in the range
[
π/6, π/(3

√
2)
]
, where π/(3

√
2) is the packing density of

the FCC lattice, the lattice with the highest packing density in three dimensions. It turns out

that a parametric form can be given, which closely approximates P ∗e (∆), and coincides with it

over a range of packing densities. This parametric form was first discovered by analyzing the

data. Later it was realized that these lattices could be obtained by placing some constraints on

the parameters in the family of well-rounded lattices (defined in the sequel).

Strongly well-rounded lattices, are defined as lattices having a basis consisting of vectors of

minimum norm, which in our context is equal to 1. Well-rounded lattices have been studied

generally [9], [24], and also for applications such as coding for wiretap Gaussian and fading

channels [10], [16].

The bases for the family of well-rounded lattices can be written as {(1, 0, 0), (− cosα, sinα, 0),

(− sin β cos γ,− sin β sin γ, cos β)}, with −1/2 ≤ − cosα ≤ 0, −1/2 ≤ − sin β cos γ ≤ 0 and
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−1/2 ≤ sin β cos(α + γ) ≤ 0. These bases are in Minkowski reduced form, and satisfy the

superbase constraint. It turns out that Λ(β), the well-rounded lattice parameterized by β with

α = π/2 and

sin γ =

 0, 0 ≤ β < π/6,

1
2 sinβ

, π/6 ≤ β ≤ π/4,
(23)

leads to a curve which closely approximates P ∗e (∆).

Error probability – packing density curves, obtained using the above parameterization, as well

as a grid search, are plotted in the right hand panel in Fig. 8. We have the following observations.

For 0 ≤ β ≤ π/6, Λ(β) has basis {(1, 0, 0), (0, 1, 0), (− sin β, 0, cos β)}. The packing density

∆(β) = π/(6 cos β), varies between π/6 (cubic lattice) and π/(3
√

3) (hexagonal lattice). The

error probability is the same as for the two dimensional case and is given by Pe = (1 − (1 −

2 sin β)2)/(16 cos2 β), which is an increasing function of β and lies in the range [0, 1/12]. The

Voronoi cell is a cube for β = 0, a regular hexagonal prism for β = π/6 and an irregular

hexagonal prism for 0 < β < π/6. From Fig. 8 it is evident that the parameterization is optimal

for this range of β values. It is interesting that there is no truly 3 dimensional Voronoi cell that

is is able to do better in this range.

For π/6 ≤ β ≤ π/4, Λ(β) has basis {(1, 0, 0), (0, 1, 0), (−
√

sin2 β − 1/4,−1/2, cos β)}. The

packing density ∆(β) = π/(6 cos β), varies between π/(3
√

3) and π/(3
√

2) (FCC). The error

probability is an increasing function of β and lies in the range [1/12, 0.1505]. The Voronoi cell

is a hexarhombic dodecahedron for π/6 < β < π/4 and a rhombic dodecahedron for β = π/4.

The parameterization coincides with P ∗e (β) for only part of this range of β values, but is a close

approximation to P ∗e (∆) over this entire range.

We also present an interesting comparison to a value listed in Table I. Specifically, the lattice

with basis {(1, 0, 0), (0, 1, 0), (−
√

17/108,−1/2,
√

16/27)} has the same volume and therefore

the same packing density as the BCC lattice (whose Voronoi region is a truncated octahedron),

but has error probability 0.1368 which is smaller than 0.1458 achieved by the BCC lattice.

At least in dimension n = 3, we have numerical evidence that when the packing density

is small enough to be obtained by a prism, a prism is optimal. A natural question is whether

this observation holds for dimensions greater than 3, i.e. do prisms achieve points on P ∗e (∆) in

higher dimensions, when ∆ is small enough. The resolution of this is left as future work, since

it will require the development of alternative analytic methods.
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V. ERROR PROBABILITY ESTIMATION FOR HIGHER DIMENSIONS

Direct error probability calculations become increasingly difficult as the lattice dimension

grows—we have already seen an example of this in going from n = 2 to n = 3 dimensions. The

main focus of this section is to use tools from probability theory to bound the error probability.

These bounds are particularly effective when the dimension becomes large. We also complement

these bounds with those of a more geometric nature.

More specifically, under the Conditional Distribution model for X, probabilistic concentration

bounds are developed in Theorems 6 and 7. These bounds allow us to show in Theorem 8

that for lattices that generate suitably thin coverings of Rn, Pc → 0 as n → ∞ under the

Uniform Distribution Model. The proof of Theorem 8 requires an extremal result on the volume

of intersection of a sphere and rectangle in Rn, Theorem 9. While the probabilistic bounds are

useful when the dimension is large, a bound based on estimating the volume of spherical caps,

Theorem 11, can provide useful results when the dimension is small. Calculations for various

lattices are provided in Sec. V-C. Error probability under the Gaussian Generative model is

derived in Sec. V-D where it is shown that Pc → 1 as n → ∞ provided the noise variance is

sufficiently small.

We have already noted that unlike the Voronoi cell, the Babai cell is basis-dependent. Hence

most of the bounds developed here are basis dependent. One important exception is the result

for thin coverings, which holds for any basis for the lattice.

A. Probabilistic Concentration Bounds: Conditional Distribution Model

We need to recall a few definitions. Let Sn(r) be the Euclidean ball (sphere) of radius r in Rn

centered at the origin. The Babai cell of a lattice with a given basis is a hyper-rectangle with sides

of length ai > 0, i = 1, 2, . . . , n and we say that the Babai cell has size a = (a1, a2, . . . , an) =

(|v11|, |v22|, . . . , |vnn|), where V is the upper triangular generator matrix of Λ.

The error probability is Pe = 1− Pc, where Pc, the success probability, is given by

Pc = Prob(X ∈ V(0)
⋂
B(0)|X ∈ B(0)). (24)

Theorem 6. (Chebyshev bound) Suppose lattice Λ ⊂ Rn has covering radius rcov, and for a

given basis has a Babai cell of size a = (a1, a2, . . . , an). Further, suppose that conditioned on
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event {X ∈ B(0)}, (i) Xi, i = 1, 2, . . . , n are independent, and (ii) µ := 1
n

∑n
i=1 E[X2

i ] > r2cov
n

.

Then

Pc ≤ Pcheb(a) :=
Var[ 1

n

∑n
i=1 X

2
i ]

(µ− r2
cov/n)2

. (25)

In particular, if conditioned on the event {X ∈ B(0)}, X is uniformly distributed on B(0) and

1

12

n∑
i=1

a2
i > r2

cov. (26)

then

Pc ≤
4

5

∑n
i=1 a

4
i

(
∑n

i=1 a
2
i − 12r2

cov)
2
. (27)

Proof. From the conditions of the theorem

{X ∈ Sn(rcov)} =

{
1

n

n∑
i=1

X2
i ≤

r2
cov

n

}
⊂

{∣∣∣∣∣ 1n
n∑
i=1

X2
i − µ

∣∣∣∣∣ > µ− r2
cov

n

}
. (28)

Thus

Pc ≤ Prob (X ∈ Sn(rcov)) ≤ Prob

(∣∣∣∣∣ 1n
n∑
i=1

X2
i − µ

∣∣∣∣∣ > µ− r2
cov

n

)
≤

Var[ 1
n

∑n
i=1 X

2
i ]

(µ− r2
cov/n)2

where the last step follows from Chebyshev’s inequality [27].

When X is uniformly distributed on B(0), Var[Xi] = a2
i /12, Var[X2

i ] = E[X4
i ] − E[X2

i ]2 =

a4
i /180, and the Xi are mutually independent. Thus (27) follows by direct substitution in (25).

The Chernoff bound [27] sometimes gives tighter bounds on Pc.

Theorem 7. (Chernoff bound) Suppose lattice Λ ⊂ Rn has covering radius rcov, and for a given

basis has a Babai cell of size a = (a1, a2, . . . , an). Further, suppose that conditioned on the

event {X ∈ B(0)}, (i) Xi, i = 1, 2, . . . , n are independent, and (ii) µ := 1
n

∑n
i=1 E[X2

i ] > r2cov
n

.

Then

Pc ≤ Pcher(a) := eβr
2
cov/nE[e−(β/n)

∑n
i=1X

2
i ], (29)

for any β > 0. In particular, if conditioned on the event {X ∈ B(0)}, X is uniformly distributed

on B(0) and
1

12

n∑
i=1

a2
i > r2

cov, (30)

then

Pc ≤
eβr

2
cov/n

vol (Λ)

n∏
i=1

∫ ai/2

−ai/2
e−βx

2/ndx (31)

for any β > 0.
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Proof. The proof is a direct application of the Markov inequality [27] and proceeds as follows.

For any β > 0

Pc ≤ Prob

(
1

n

n∑
i=1

X2
i ≤

r2
cov

n

)
= Prob

(
e−β

∑n
i=1X

2
i /n ≥ e−βr

2
cov/n
)

≤ E[e−β
∑n
i=1X

2
i /n]

e−βr2cov/n
= eβr

2
cov/n

n∏
i=1

E[e−βX
2
i /n] =

eβr
2
cov/n

vol (Λ)

n∏
i=1

∫ ai/2

−ai/2
e−βx

2/ndx.

Lattices that result in thin coverings: Under the Uniform Distribution Model, we derive a

sufficient condition on the thickness of the lattice covering and hence its covering radius, such

that Pc → 0 as n → ∞ (for such lattices, the Babai point is asymptotically bad). We describe

our method first, and then provide theorems and proofs.

Let K be an n-dimensional centrally symmetric cube whose volume is the same as that of a

Babai cell, i.e. vol (K) = vol (B(0)) = vol (Λ).

1) We will show that vol (B(0)
⋂
Sn(rcov)) ≤ vol (K

⋂
Sn(rcov)). This is based on an extremal

result, whose proof will be provided next, regarding the volume of intersection of a sphere

and a rectangle of given volume, namely, that the volume is maximized when the rectangle

is a cube. This together with (3) will lead to

Pc =
vol (B(0)

⋂
V(0))

vol (B(0))
≤ vol (B(0)

⋂
Sn(rrcov))

vol (B(0))
≤ vol (K

⋂
Sn(rcov))

vol (K)
.

2) For a lattice that results in a sufficiently thin covering, we will show that the Chebyshev

condition, µ > r2
cov/n of Theorem 6, will hold when X is uniformly distributed over K, by

using the result of Item 1. The result Pc → 0 as n → ∞ will then follow by application

of Theorem 6.

We address Item 2 first in the following theorem, assuming that Item 1 holds.

Theorem 8. (Success probability of thin coverings) Suppose there is an ε > 0 and an n0 > 0

such that for all n > n0 the covering radius of a lattice Λn ⊂ Rn satisfies

vol (Λn)2/n

12
− r2

cov

n
≥ ε vol (Λn)2/n .

Then Pc → 0 as n→∞.

Proof. The theorem states that Pc becomes small for lattices that generate a suitably thin covering

of Rn. Apply Theorem 6 with X uniformly distributed over K, a centrally symmetric cube whose
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volume is equal to that of B(0), in order to obtain an upper bound on vol (K
⋂
Sn(rcov)). Denote

the length of each side of K by b; thus bn = vol (B(0)) = vol (Λn). From the condition of this

theorem (26) is satisfied and from (27) it follows that

Pc ≤
4

720

nb4

n2ε2b4
→ 0,

as n→∞.

Before we state and prove the theorem for Item 1, we introduce some definitions, for con-

venience. Given α = (α1, α2, . . . , αn), αi > 0, i = 1, 2, . . . , n, let α∼i to be the (n − 1)-

dimensional vector obtained by deleting the ith component αi from α, so with α = (3, 19, 7, 6),

α∼2 = (3, 7, 6). Let

R(α) = {x ∈ Rn : |xi| ≤ αi, i = 1, 2, . . . , n}

be the n-dimensional centered rectangle with vertices (±α1,±α2, . . . ,±αn). Let

V (r, α, n) = vol
(
Sn(r)

⋂
R(α)

)
.

For any n-dimensional vector α = (α1, α2, . . . , αn), let f(α) = (β, β, . . . , β), where β =

(α1α2 . . . αn)1/n, i.e. f(α) is the n-dimensional vector with each component equal to geometric

mean of the components of α. Thus R(f(α)) is a centrally symmetric cube, with volume equal

to that of R(α). Our objective is to show that V (r, α, n) ≤ V (r, f(α), n) for every n.

Also for convenience we introduce the operator, gi defined by

gi(α) = gi(α1, α2, . . . , αn) = (β, β, ..., β, αi, β, . . . , β),

where

β =

(
n∏
j=1

αj/αi

) 1
(n−1)

.

Thus gi fixes the ith component of α and replaces every other component by β, while preserving

the product. Further let g(m)(α) denote the m-fold circular composition of the gi’s, where we

apply to α, the operators g1, g2,...,gn, g1, g2, ... sequentially in circular fashion, m times. The

proof relies on the following lemma, which states that when gi is applied to α many times,

circularly, the result converges to the constant vector f(α).

Lemma 2. (Convergence of the composition) For fixed n > 2 and any α = (α1, α2, . . . , αn)

with strictly positive and finite components

lim
m→∞

g(m)(α) = f(α).
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Proof. After m iterations of g, m ≥ 1, the resulting vector g(m)(α) has at most two distinct

entries, um which appears once and vm which is repeated (n− 1) times. Both entries are finite

and strictly positive. The ratio satisfies the recursion (um+1/vm+1) = (vm/um)1/(n−1) which

converges to 1 as m→∞.

Theorem 9. (Extremal intersection) Over the class of all centrally symmetric rectangles in Rn

with given volume, the volume of intersection with a centrally symmetric sphere is maximized

by the n-dimensional cube. Specifically,

V (r, α, n) ≤ V (r, f(α), n)

for every r > 0, every rectangle R(α) and every n ≥ 2.

Proof. Proof is by induction. From the result due to L. Fejes Tóth, [13], reproved in a more

specific manner by G. Hajós, [17], as described by Florian [14], the result is valid for n = 2.

Assume that the theorem is true for n = k−1, which is our induction hypothesis. We now show

it is true for n = k.

For any i, 1 ≤ i ≤ k, we can write

V (r, α, k) =

∫ αi

−αi
V (
√

(r2 − x2)+, α∼i, k − 1)dx, (32)

where (x)+ = max(x, 0). From the induction hypothesis

V (
√

(r2 − x2)+, α∼i, k − 1) ≤ V (
√

(r2 − x2)+, f(α∼i), k − 1).

Thus, it follows that

V (r, α, k) ≤
∫ αi

−αi
V (
√

(r2 − x2)+, f(α∼i), k − 1)dx = V (r, gi(α), k). (33)

Repeating this step circularly, we get

V (r, α, k) ≤ lim
m→∞

V (r, g(m)(α), k) = V (r, f(α), k), (34)

proving our assertion.

Corollary 2. (Success probability of Rogers’ lattices) The success probability Pc → 0 as n→∞

for lattices which satisfy Rogers’ bound [29] on the thickness, Θn, namely,

Θn ≤ cn(loge n)κ,

κ = log2

√
2πe.
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Proof. Rogers’ bound implies that for any δ > 0 and n sufficiently large

r2
cov

n
≤ (1 + δ)vol (Λn)2/n

2πe
.

Choose δ such that (1+δ)
2πe

< 1
12

and let ε = 1
12
− (1+δ)

2πe
. Thus there is an ε > 0 and an n0 such that

for all n > n0, vol(Λn)2/n

12
− r2cov

n
≥ ε vol (Λn)2/n and the condition of Theorem 8 is satisfied.

Remark 3. Unlike the bounds derived earlier which depend on the basis, the results of Theorem 8

and Corollary 2 hold for any basis for the lattice.

B. Geometric Bounds

We consider next some bounds of more geometric nature.

Theorem 10. (Exclusion bound) For a lattice Λ with covering radius rcov and a given basis,

suppose that a Babai cell has size a = (a1, a2, . . . , an) which satisfies a1 ≥ a2 ≥ . . . ≥ am >

2rcov ≥ am+1 ≥ . . . an. Then

Pc = Prob(X ∈ V(0)
⋂
B(0)|X ∈ B(0)) ≤ (2rcov)

m∏m
i=1 ai

. (35)

When 2rcov ≥ a1, the bound is unity.

Proof. The idea is to cut off parts of the Babai rectangle which are outside the sphere Sn(rcov),

starting with cutting planes ±rcove1 ∈ Rn, where ei is the ith standard basis vector. After the ith

pair of cuts ±rcovei, we are left with a smaller rectangle of size (2rcov, . . . , 2rcov, am+1, . . . , an)

which intersects Sn(rcov). We stop after the mth pair of cuts, for then every face of the remaining

rectangle intersects the interior of Sn(rcov). The ratio of the volume of the remaining rectangle

to the volume of B(0) is the desired upper bound on the probability. Thus

Pc ≤
(2rcov)

mam+1 . . . an
vol (Λ)

=
(2rcov)

m

a1a2 . . . am
, (36)

where in the last step we have used a1a2 . . . an = vol (Λ).

Remark 4. We refer to the rectangular cell obtained by cutting the Babai cell B(0) in Theorem 10

as the excluded Babai cell Bex(0).

By applying the Chebyshev or Chernoff bound to Bex(0) we obtain the following bound.
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Corollary 3. (Exclusion-concentration bound) Suppose m is defined as in the Exclusion bound

(Theorem 10) and that δ1 = 1
12

∑n
i=m+1 a

2
i − r2

cov(1−m/3) > 0. Then

Pc ≤
(2rcov)

m∏m
i=1 ai

Pconc(ã)

where Pconc(ã) is either of min [Pcheb(ã), 1] or min [Pcher(ã), 1] with

ã = (2rcov, . . . , 2rcov︸ ︷︷ ︸
m times

, am+1, . . . , an).

Proof. Direct application of the Exclusion bound followed by the one of the concentration

bounds, Theorems 6 or 7.

As a dual of the Theorem 10, lower bounds for the error probability can also be derived, given

a Babai cell size a = (a1, a2, . . . , an) of a lattice Λ, if ai < 2rpack for some i = 1, . . . , n. When

this condition is satisfied, the region of two spherical caps which are cut from the packing sphere

Sn(rpack) by the hyperplanes xi = ±ai
2

will be out of the Babai region B(0), but inside the Voronoi

region V(0), and their volumes will contribute to the error probability. Note that here we are

assuming that X is uniformly distributed over V(0), rather than B(0). This is justified since for

the Uniform Distribution Model, vol (B(0)
⋂
V(0)) /vol (B(0)) = vol (B(0)

⋂
V(0)) /vol (V(0)).

When the condition ai < 2rpack is satisfied for more than one i, let us say, aj and ak for

example, we may consider other caps to be cut, but in order to have no overlapping of volumes

between caps, we must have
a2j
4

+
a2k
4
≥ r2

pack. We consider here the reordered set such that

a1 ≤ · · · ≤ am < 2rpack. For the purpose of this proof we use the following notation. Let Vn be

the volume of the unit radius n-dimensional sphere given by Vn = πn/2

Γ(n/2+1)
, Γ(n) is the Euler’s

gamma function.

Using this geometric approach, we can state the following result.

Theorem 11. (Spherical cap bounds) For a lattice Λ with packing radius rpack, suppose the

Babai cell sizes a = (a1, . . . , an) are ordered in a way such that a1 ≤ a2 ≤ · · · ≤ an. If

ai ≤ 2rpack, for i = 1, . . . ,m, two lower bounds for the error probability are

i) Pe ≥ 2Vn−1
rnpack

a1...an

(∫ arccos
(

a1
2rpack

)
0

sinn(t) dt +
m∑
i=2

∫ arccos
(

`i
2rpack

)
0

sinn(t) dt
)
, where `i =

max
{
ai
2
,

√
r2

pack −
a21
4

}
.
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ii) Pe ≥ 2Vn−1
rnpack

a1...an

( m∑
i=1

∫ arccos
(

bi
2rpack

)
0

sinn(t) dt
)
, where bi = max{ai

2
,
rpack√

2
}.

Proof. For i = 1, we consider the volume of two spherical caps of a sphere with radius rpack cut

by the hyperplanes x1 = ±a1
2
. For i = 2, . . . ,m we consider the volume of the caps cut by the

hyperplanes xi = ±`i = ±max
{
ai
2
,

√
r2

pack −
a21
4

}
. Since we have no overlapping of volumes,

we can assert that

Pe ≥
2

a1 . . . an

[
vol
(
Cap(rpack,

a1
2

)
)

+
m∑
i=2

vol (Cap(rpack, `i))
]
, (37)

where vol (Cap(r, b)) = Vn−1

∫ arccos
(
b
r

)
0

sinn(t) dt is the volume of a spherical cap in a sphere

of radius r in Rn cut by parallel hyperplanes at distance b from the equator. From (37), the

result stated in item (i) follows.

Regarding item (ii), for i = 1, . . . ,m, let bi = max{ai
2
,
rpack√

2
}. Again, there is no common

volume between the spherical caps cut by the hyperplanes xi = ±bi and it follows that

Pe ≥
2

a1 . . . an

[ m∑
i=1

vol
(
Cap(rpack,

bi
2

)
) ]
. (38)

Upon expanding the formula for the volume of the spherical cap, the result of item (ii) arises.

One can observe that the bounds stated in Theorem 11 are directly related to the lattice center

density, defined as
rnpack

a1...an
.

C. Applications of the Bounds for the Uniform Distribution Model

Examples of the bounds discussed in Secs. V-A and V-B are presented for some lattices lattices.

Z2 lattice: Consider the Z2 lattice with basis {(5, 12), (2, 5)}, which is not Minkowski-reduced.

After performing a QR decomposition, we get
{

(13, 0),
(

70
13
, 1

13

)}
. Since 13 >

√
2 = 2rcov,

Theorem 6, we gives the looser bound Pc ≤ 0.859, while Theorem 10 provides Pc ≤
√

2
13
≈ 0.108.

The exact success probability here is Pc = 0.0833. This particular example illustrates a general

observation that Theorem 10 and Corollary 3 are useful when we are working with bad bases,

which results in highly elongated Babai cells and consequently, a reduced success probability.

E8 lattice: Consider the generator matrix for the E8 lattice as in [7, Eq. (99)]. Since the

packing radius is rpack = 1√
2
, Theorem 11 (i) gives Pe ≥ 0.0725 and the conditions required on
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Theorems 6 and 10 regarding the covering radius are not satisfied.

Barnes-Wall lattice Λ16: Consider the Barnes-Wall lattice Λ16 with generator matrix as presented

in [7] , Fig. 4.10 scaled by a factor of
√

2,, with packing radius
√

2. The lower bound on the

error probability given by Theorem 11 (i) is Pe ≥ 0.00203, while the conditions for the covering

radius on Theorems 6 and 10 are not satisfied.

Leech lattice Λ24: Consider the Leech lattice Λ24 with generator matrix as given in [7], Fig. 4.12.

For this generator matrix the size of the Babai cell is a = (8, 4(11), 2(11), 1)/
√

8 and the covering

radius is
√

2 which gives Pc ≤ Pcheb(a) = 0.6557. A lower value is obtained by minimizing the

Chernoff bound in Theorem 7. Specifically for β = 53.96, we obtain Pc ≤ Pcher(a) = 0.3882.

Behavior of the Chernoff bound for different values of β is illustrated in Fig. 9. Regarding the

lower bound given by Theorem 11, Pe ≥ 0.00197.

50 52 54 56 58 60
β0.3880

0.3885

0.3890

0.3895

0.3900
Pcher

Fig. 9. Chernoff upper bound on Pc as a function of β for the Leech lattice.

An lattices: An has generator matrix in square form given by VAn = In + cn
n
Jn, where In is the

n × n identity matrix, cn = −1 ±
√
n+ 1 and Jn is n × n the matrix of ones [19]. From this

fact, we can determine a1, . . . , an, which are the the diagonal elements of the upper triangular

matrix R obtained through QR decomposition. Hence,

a1 = r11 =
√

2, a2 = r22 =

√
3

2
, a3 = r33 =

√
4

3
=

2√
3
.

If we move forward with this process, ak =
√

k+1
k
, for any k = 1, . . . , n. Then, is it valid

that rpack =
√

2
2

and rpack√
2
< ak

2
≤ rpack, for k = 1, . . . , n. Considering item (ii) of Theorem 11, it
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follows that

Pe ≥ 2
2−n

2
Vn−1√
n+ 1

( m∑
i=1

∫ arccos

(√
k+1
2k

)
0

sinn(t) dt
)
. (39)

For example, we have that for A2, Pe ≥ 0.05299. Note that the basis for the A2 lattice

considered here is equivalent to the hexagonal lattice with Minkowski-reduced basis, and as we

have seen in Corollary 1, the exact error probability is 1
12
≈ 0.0833. For A3, Pe ≥ 0.1303, for

A4, Pe ≥ 0.1918, for A5, Pe ≥ 0.2152, and for A6, Pe ≥ 0.2022. For dimensions up to 5, the

lower bound on Pe increases and after that it decreases, which is explained by the contribution

of Vn−1 in such calculation.

On the other hand, observe that the condition from (26) is not satisfied for this lattice. Indeed,

1

12

n∑
i=1

a2
i =

1

12

n∑
i=1

(
1 +

1

i

)
, (40)

and rcov =
1√
2

(
2 · bn+1

2
c
(
n+ 1− bn+1

2
c
)

n+ 1

)1/2

[7, p. 109]. Note that

r2
cov =


n+1

4
, if n is odd

n(n+2)
4(n+1)

, if n is even
(41)

and r2
cov >

n
4
, for all n. By considering the upper bound for a partial finite sum of the harmonic

series together with (40), it is valid that

1

12

n∑
i=1

(
1 +

1

i

)
=

1

12

(
n+ 1 +

n∑
i=2

1

i

)
<

1

12
(n+1+log(n)) <

1

12
(2n+1) <

n

4
< r2

cov, (42)

for all n ≥ 1.

D. Gaussian Generative Model

We now analyze the Gaussian case, as described in Sec. II-A for which Pe is given by (4).

Analytic evaluation of this probability in closed form is difficult, even in low dimensional cases.

Numerical analysis of Pe for n = 2 as a function of the packing density for various values of

the noise variance σ2 is presented in Fig. 10 (this is the counterpart of Fig. 7 for the Gaussian

case). For a two dimensional lattice Λ with basis {(1, 0), (a, b)}, we have calculated the term

T in (4), which we will refer to here as Pe(σ2, a, b).We could observe that ∂Pe(σ2,a,b)
∂a

< 0 for

−1
2
≤ a ≤ 0 and b ≥

√
3

2
, therefore for a fixed variance σ2 and fixed b, Pe(σ2, a, b) is decreasing
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Fig. 10. Minimum error probability for given packing density assuming π
4
< ∆2 ≤ π

2
√
3

(or 3/4 ≤ b2 < 1), considering a

Gaussian distribution.

with a. Thus, the same minimization for the parameter a as in Remark 2 applies here. It is

straightforward to conclude that smaller variance provides smaller error probability.

We now develop a sufficient condition on σ2 for Pc → 1 as n→∞, in terms of the packing

radius of the lattice.

Theorem 12. (Condition on σ2 for success probability) Given a lattice with packing radius rpack

and a basis for which the Babai cell sizes are a = (a1, a2, . . . , an). Let r2
b = min

i=1,...,n

{
a2
i /4n

}
.

Given that σ2 < r2
0 := min

{
r2

pack/n, r
2
b

}
, the probability that the Babai and Voronoi points

coincide satisfies the lower bound

Pc ≥ 1− 2σ4

n(r2
0 − σ2)2

.

Thus if there is an ε > 0 such that r2
0−σ2 > ε, for all n larger than some n0, then lim

n→∞
Pc = 1.

Proof. From (4), we have that

Pc ≥ Prob
(
Z ∈ V(0)

⋂
B(0)

)
≥ Prob (Z ∈ Sn(r0))

= Prob
(
‖Z‖2/n ≤ r2

0

)
= Prob

(
‖Z‖2/n− σ2 ≤ r2

0 − σ2
)

= 1− Prob
(
‖Z‖2/n− σ2 > r2

0 − σ2
)

≥ 1− Prob
(∣∣‖Z‖2/n− σ2

∣∣2 > (r2
0 − σ2)2

)
(a)

≥ 1−
Var[ 1

n
‖Z‖2]

(r2
0 − σ2)2

(b)

≥ 1− 2σ4

n(r2
0 − σ2)2

.
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where in (a) we have used the Markov inequality [27] and in (b) the fact that Var[Z2
i ] = 2σ4.

Theorem 12 states that if the variance σ2 satisfies the proposed condition, then estimating the

Babai point is enough to guarantee the correct solution for the nearest lattice point problem.

VI. SUMMARY AND CONCLUSIONS

We first considered the problem of finding an approximate nearest point in a given lattice Λ to

x ∈ Rn in a distributed network. We assumed that each component of the vector x is available at

a distinct sensor node and the lattice point is to be obtained at a central node. Thus each sensor

node sends a quantized version of its observation to a central node. A protocol for transmitting

this information to the central node was presented, its communication rate was determined, and

shown to be optimal when the components of the real vector are mutually independent.

We then considered the problem of evaluating the error probability, namely, the probability

that the approximate nearest lattice point (Babai point) does not coincide with the nearest

lattice point (Voronoi point). Closed form expressions for the error probability were derived

in two dimensions. For the three dimensional case, we have computationally estimated the worst

error probability. Our results show that the error probability increases as the packing density

of the lattice becomes larger. For dimensions greater than 3, we have used probabilistic and

geometric methods to obtain bounds on the error probability and have shown that, when the

lattice generates a suitably thin covering of Rn, the probability that the Babai point coincides

with the Voronoi point converges to 0 when the dimension n goes to infinity, under a uniform

distribution assumption. Thus, when the vector x is uniformly distributed over a certain region,

additional communication is required to compute the Voronoi point. On the other hand, when

x is obtained by the addition of Gaussian noise of sufficiently small variance, the probability

that the Babai and Voronoi points coincide converges to 1 as the dimension goes to infinity.

Therefore, when x is obtained by the addition of Gaussian noise of sufficiently small variance

to a lattice point, no further communication will be necessary in order to obtain the Voronoi

point.

In the future, it would be of interest to compare the results obtained here with the ones in

[15, Ch. 18], which evaluate how far the Babai point is from the Voronoi point when an LLL

reduced basis is considered. It would also be interesting to check whether for high dimensions

the probability that both points coincide is small for a lattices with a high packing density, even

when good bases are assumed.
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[25] P. Q. Nguyen and D. Stehlé, “Low-Dimensional Lattice Basis Reduction Revisited”, Proc. of the Int. Alg. Num. Th. Symp.,

2004, pp. 338-357.

[26] A. Orlitsky and J. R. Roche, “Coding for Computing”, IEEE Trans. on Inf. Th., vol. 47, no. 3, pp. 903–917, Mar. 2001.

[27] A. Papoulis, Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 1991.

[28] C. Peikert. “A Decade of Lattice Cryptography”, 2016.

[29] C. A. Rogers, Packing and Covering. Cambridge, UK: Cambridge University Press, 1964.

[30] V. A. Vaishampayan, “Precoder Design for Communication-Efficient Distributed MIMO Receivers with Controlled Peak-

Average Power Ratio,” IEEE Transactions on Communications, doi: 10.1109/TCOMM.2021.3070364.

[31] T. Wang, A. Cano, G. B. Giannakis and J. N. Laneman, “High-performance cooperative demodulation with decode-and-

forward relays,” IEEE Transactions on communications, vol 55, no. 7, pp.1427-1438, 2007.

[32] V. A. Vaishampayan and M. F. Bollauf, “Communication Cost of Transforming a Nearest Plane Partition to the Voronoi

Partition”, in Proc. 2017 IEEE Int. Symp. Inform. Th., Jul. 2017, pp. 1843-1847.

[33] Wolfram Research, Inc., Mathematica, Version 11.2, Champaign, IL, 2017.

[34] R. Zamir, Lattice Coding of Signals and Networks. Cambridge University Press, 2014.


