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Abstract—We consider the problem of iteratively solving a
system of linear equations using the Gauss-Seidel method. Our
objective is to determine the tradeoff between the error and
the amount of communication (measured in bits) in a two-party
setup, where each party possesses partial information. Specifically
our objective is to solve for x ∈ R2, the 2 × 2 system of linear
equations Mx = b when matrix M is known to both parties,
and each party knows only a single component of b ∈ R2. It is
required that each party know the approximate solution when
communication ends.

We propose a communication-efficient algorithm, prove con-
vergence and determine the speed of convergence of the error
with respect to the number of bits exchanged.

I. INTRODUCTION 1

Consider two nodes A and B, each one with some informa-
tion about a linear system Mx = b, where M = (mij)i, j=1,2

is a 2 × 2 real matrix, and b = (b1, b2)>, −1 ≤ bi ≤ 1
and x ∈ <. Suppose both A and B know the matrix M
and each one has some information about the b, for example
A and B know b1 and b2, respectively. Our goal in this
problem is compute an approximation to the exact solution
x∗ = (x∗1, x

∗
2)> in both nodes, i.e., given ε > 0, we want to

compute x such that ‖x − x∗‖ < ε. Assuming we are able
to send some information between the nodes with some cost
by round, we want to compute an approximation using the
minimum possible number of bits.

II. NUMERICAL LINEAR ALGEBRA APPROACH

One approach to solve this problem is to use an adaptation
of the well known Gauss-Seidel method [1] to solve a linear
system.

Let M = L + U , where L is the Lower Triangular part
of M (including its main diagonal) and U = M − L. This
iterative method to solve Mx = b is

x(n+1) = Tx(n) + c,

where T = −L−1U and c = L−1b.
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and can be seen as a fixed-point method when M is a matrix
with some properties to be assumed here – M should be a
strictly diagonally dominant matrix, i.e. |mii| > |mij |.

If we could send information without care about cost, we
would proceed the Gauss-Seidel method as follows:
(i) ı = 0, x(0) = (x

(0)
1 , x

(0)
2 );

(ii) Node A starts computing

x
(ı+1)
1 =

b1 −m12x
(ı)
2

m11
,

and sends x(ı+1)
1 to B;

(iii) Node B computes

x
(ı+1)
1 =

b2 −m21x
(ı+1)
1

m22
,

and sends x(ı+1)
2 to A;

(iv) We update ı ← ı + 1 and return to (ii) while
‖x(ı) − x∗‖ > ε or ı < ımax.

If each bit that we send has some cost, we can adapt the
later procedure in order to send a limited number of bits per
round.
(i) ı = 0, x(0) = (x

(0)
1 , x

(0)
2 ), D a nonnegative integer

(typically a power of 2 or 10).
(ii) Node A starts computing

y =
b1 −m12x

(ı)
2

m11
,

search for integer p such that, for a fixed D,∣∣∣y − p

D

∣∣∣ < 1

2D
,

set x(ı+1)
1 = p/D and sends to B;

(iii) Node B computes

z =
b2 −m21x

(ı+1)
1

m22
,

search for integer q such that, for a fixed D,∣∣∣z − q

D

∣∣∣ < 1

2D
,



set x(ı+1)
2 = q/D and sends to A;

(iv) We update ı ← ı + 1 and return to (ii) while
‖x(ı) − x∗‖ > ε or ı < ımax.

For now and on we will call xGS and x the Gauss-Seidel
and our iteration respectively to avoid ambiguity. To establish
a relation between x and xGS first we write both iterations in
matrix form

x
(n+1)
GS = Tx

(n)
GS + c,

and
x(n+1) = Tx(n) + c+ Sδ(n),

where δ(n) = (∆1(n), ∆2(n))> is the error when rationaliza-
tion step is done and

S =

(
1 0

−m21/m22 1

)
.

Note that, when n = 0,

x
(1)
GS = Tx

(0)
GS + c, x(1) = Tx(0) + c+ δ(0) = x

(1)
GS + δ(0),

since x(0) = x
(0)
GS .

Using the same argument

x(2) = Tx(1) + c+ Sδ(1)

= T (x
(1)
GS + Sδ(0)) + c+ Sδ(1)

= x
(2)
GS + TSδ(0) + Sδ(1).

Applying some inductive process we can show that

x(n+1) = x
(n+1)
GS +

n∑
i=0

T iSδ(n−i), for all n ≥ 0. (1)

And from the triangular inequality

‖x(n) − x∗‖ ≤ ‖x(n) − x(n)
GS‖+ ‖x(n)

GS − x∗‖. (2)

Proposition 1. If M is a strictly diagonally dominant matrix,
we can assure that there is an upper bound to the error
‖x(n) − x∗‖ when n grows.

Proof. Starting from the exact solution for the linear system

x∗ =

(
m22b1 −m12b2

m11m22 −m12m21
,

m11b2 −m21b2
m11m22 −m12m21

)>
, (3)

we can write the n-th Gauss-Seidel iteration as

x
(n)
GS = Tnx(0) +

n−1∑
i=0

T ic =(
m22K

n(m21(b1 +m12x
(0)
2 )−m11(b2 +m22x

(0)
2 ))

m21(m12m21 −m11m22)

+
m21(m12b2 −m22b1)

m21(m12m21 −m11m22)
,

Kn(m21(m12x
(0)
2 − b1) +m11(b2 −m22x

(0)
2 ))

m12m21 −m11m22

−m11b2 +m21b1
m12m21 −m11m22

)>
(4)

where K = m12m21

m11m22
.

Finally, subtracting (3) of (4), taking the norm and taking
(by choice) x(0)2 = 0, we have

‖x(n)
GS − x∗‖ =∣∣∣∣m12m21

m11m22

∣∣∣∣n ∣∣∣∣ m21b1 −m11b2
m11m22 −m12m21

∣∣∣∣︸ ︷︷ ︸
γ

√
1 +

(
m22

m21

)2

. (5)

To put a bound on the first part of (2), we use (1)

‖x(n) − x(n)
GS‖ ≤

n−1∑
i=0

‖T iS‖‖δ(n−1−i)‖ ≤√
1 +

(
m22

m21

)2

︸ ︷︷ ︸
α

n−1∑
i=0

∣∣∣∣m12m21

m11m22

∣∣∣∣i︸ ︷︷ ︸
βi

√
∆2

1(i) + ∆2
2(i). (6)

Combining (5) and (6) in (2) we have

‖x(n) − x∗‖ ≤

α

(
βnγ +

n−1∑
i=0

βi
√

∆2
1(i) + ∆2

2(i)

)
. (7)

Assume that we will run the algorithm for n steps and choose
the ∆’s so that at the end of nth step,

βnγ = ν

n−1∑
i=0

βi
√

∆2
1(i) + ∆2

2(i) (8)

for some previously chosen constant ν and (7) becomes

‖x(n) − x∗‖ ≤ α(1 + ν)βnγ.

Now, let Rn be the total number of bits exchanged. Suppose
∆1(i) = ∆2(i) = ∆(i). Then at the ith step we exchange
R(i) = 2 log2(1/∆(i)) bits and Rn =

∑n
i=1R(i) is the

total number of bits.

Proposition 2. The best choice of ∆(i) in order to minimize
Rn satisfying (8) for some constant ν, is

∆(i) =
β(n−i)γ√

2nν
. (9)

Note that minimize the total number of bits is the same of
maximize the products of ∆(i) for all i. Using the Lagrange
multipliers we obtain (9).

Example 3. Consider the following four matrices:

M1 =

(
10 1
2 8

)
, M2 =

(
2 1
−1 3

)
,

M3 =

(
1 0.9

0.9 1

)
, M4 =

(
1 2
3 1

)
.



Matrices M1 and M2 are strongly diagonal dominant, M3 is
almost not diagonally dominant and M4 the diagonal elements
are smaller than the others.

For each matrix we run the proposed Modified Gauss
Seidel Method using the choice of ∆(i) = 1/Di based on
Proposition 2. Also, we choose three values for ν = 10−5

(blue dots), 10−6 (yellow dots) and 10−7 (green dots) based
on previous tests. The behavior can be seen in Figure 1 to
Figure 4. It is important to note that we choose the same
solution for all linear systems.
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Fig. 1. Matrix M1. Maximum error≈ 10−2
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Fig. 2. Matrix M2. Maximum error≈ 10−3
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Fig. 3. Matrix M3. Maximum error≈ 10−4
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Fig. 4. Matrix M4. The method does not converge.

III. CONCLUSION

In this work, we proposed a adaptation of the Gauss-
Seidel method to solve a linear system involving two nodes
exchanging some information. We developed a method that
converges to the original solution under some assumptions.

A natural extension to be approached in a future work is
to consider a bigger number of nodes exchanging information
resulting in a linear system of higher order and analyze the
method we proposed here. In dimension bigger than two, it
is possible to analyze two different situation who leads in
two known iterative methods: The Gauss-Seidel Method or
the Jacobi method.
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