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On the Interactive Communication Cost of the

Distributed Nearest Lattice Point Problem

V. A. Vaishampayan and M. F. Bollauf

Abstract

We consider the problem of distributed computation of the nearest lattice point for a two dimensional

lattice. An interactive two-party model of communication is considered. Algorithms with bounded, as

well as unbounded, number of rounds of communication are considered. For the algorithm with a

bounded number of rounds, expressions are derived for the error probability as a function of the total

number of communicated bits. We observe that the error exponent depends on the lattice. With an

infinite number of allowed communication rounds, the average cost of achieving zero error probability

is shown to be finite.

Index Terms

Lattices, lattice quantization, Communication complexity, distributed function computation, Voronoi

cell, Babai cell, rectangular partition.

Given a lattice 1 Λ ⊂ Rn, and x = (x1, x2, . . . , xn) ∈ Rn, the lattice point yv(x) which

minimizes the Euclidean distance ‖x − y‖, y ∈ Λ is called the nearest lattice point to x. The

nearest lattice point problem is to find yv(x) for each x ∈ Rn.

Our objective is to study the communication cost of finding the nearest lattice point in a

distributed network under the assumption that xi is only available at node-i, i = 1, 2, . . . , n, in a

network of n nodes. We consider an interactive communication model in which nodes exchange
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information according to a pre-arranged protocol. When communication ends, each node has

sufficient information to determine y(x), an approximation to yv(x). We restrict our work to

lattices of dimension 2, since this captures most of the main geometric insights required for the

analysis.

We view our problem as a distributed function computation problem, the function being the

nearest lattice point to x and consider interactive communication protocols for the computation

of this function. In an interactive protocol, a communication session is broken up into rounds

and in each round a node is allowed to compute its message based on local information and all

the information that it has received from other nodes in previous rounds. Interactive protocols

are more powerful than one-way protocols [26].

The cost of communication for any function depends on the nature of the function, the error

criterion used if an approximate solution is sought, and the correlation structure of the source.

In order to pay attention to the function alone, we will assume throughout this work that the

information available at each node is statistically independent. The main contributions of the

paper are as follows.

1) We consider interactive protocols with a single-round as well as interactive protocols with

an unbounded number of rounds.

2) For a single round protocol we develop analytic expressions for the tradeoff between rate

and error probability.

3) For interactive protocols with an unbounded number of rounds, we exhibit a construction

which results in zero error probability with finite average bit cost.

4) We study the dependence of the communication cost of our protocols on the lattice

structure.

Since the problem of finding the nearest lattice point can be viewed as a classification problem,

where a class is the Voronoi cell of a lattice point, our results are of value for distributed

classification problems in general. Given the current focus on data analytics and cloud computing,

the communication costs of distributed classification problems are expected to play an important

role in practice.

In a companion paper [5] we have developed upper bounds for the communication complexity

of constructing a specific rectangular partition for a given lattice along with a closed form

expression for the error probability Pe. The partition is referred to as a Babai partition and is

an approximation to the Voronoi partition for a given lattice.
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The probability of an event E is written Pr(E) or PX(E), when the distribution is to be

emphasized. The probability density function (pdf) of X is denoted by pX(·). The conditional

pdf of X given Z is denoted pX|Z(·|·). The entropy function is denoted by H(·), with argument

being either a random variable or a probability distribution. The differential entropy function

is denoted by h(·) with similar convention regarding its argument. If B ⊂ R2, then we define

Bi = {xi : (x1, x2) ∈ B}, i = 1, 2 to be its projection on the ith coordinate axis.

The remainder of the paper is organized as follows. Previous work is reviewed in Sec. I,

assumptions and a preliminary analysis are presented in Sec. III, the interactive model is analyzed

and quantizer design is presented for a single round of communication in Sec. IV, and for an

unbounded number of rounds of communication in Sec. V. Numerical results and a discussion

are in Sec. VI. A summary and conclusions is provided in Sec. VII.

I. PREVIOUS WORK

The problem considered here is related to the following bodies of prior work: interactive

communication, distributed function computation, distributed hypothesis testing and quantization,

in particular, asymptotic quantization theory. We briefly review prior work in each of these

areas. Loosely speaking, communication complexity is the minimum amount of communication

required to achieve a specific objective, whether it be distributed compression or distributed

function computation.

Two-party interactive communication is considered in a series of papers [25], [26], [27].

When worst-case complexity is considered, infinite message complexity can be as small, but no

better than, the logarithm of the one-message complexity, and the one-message complexity is

the logarithm of the strong chromatic number of a graph that is derived from the support set of

the joint distribution of the pair of random variables. It is also shown that two messages suffice

to achieve communication within a constant factor of the best possible using an infinite number

of messages. For the average case, when random variables are uniformly distributed over their

support set, average case communication close to the conditional entropy can be acheived using

four or more messages [27].

Given a function f of several variables, the communication complexity of computing f in a

distributed setting is considered in [35], [16]. Early information theoretic work on communication

complexity for distributed function computation includes [34]. In [28] the problem of computing

f(X, Y ) at node-Y is considered and it is shown that HG(X|Y ) bits are necessary and sufficient,
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where HG is a conditional entropy defined on G the characteristic graph of X , Y and f . A

characterization of the two-message rate region is also provided. More recently, two terminal

interactive communication is studied in considerable detail in [21], [24], and the benefit of an

unbounded number of messages is demonstrated. In particular tight bounds for computing the

Boolean AND function are obtained.

If X and Y are iid Gaussian with unit variance, with correlation coefficient ρ, f(X, Y ) =

(X+Y )/2, the objective is to calculate f at node-Y , and only a single round of communication

is allowed from node-X to node-Y then node-X must send (1/2) log2((1 − ρ2)/4D) bits to

achieve mean squared error distortion D [34]. If ρ = 0, the minimum rate required coincides

with the rate for communicating X/2 with mse distortion D, as can be seen from the rate

distortion function for the source. If the objective is to determine (X +Y )/2 at both nodes with

mse distortion D, the minimum sum rate is log2((1− ρ2)/4D), which is twice the rate required

for calculating f at one node. Once again, when ρ = 0 this coincides with the minimum rate for

sending X/2 to Y and Y/2 to X , even if multiple rounds of interactive coding are allowed [30].

Our work is based on analysis techniques for quantization [4], [9], [36] some applications

of which to detection problems have already appeared in [29], [3] and [11]. More recently,

the design of fine scalar quantizers for distributed function computation with a squared error

distortion measure is considered in [23] and succeeding works.

II. APPLICATIONS

While the problem considered in this paper is of fundamental importance, it also has potential

applications to emerging systems for network security and machine learning.

The need for large scale distributed systems has been noted, by security researchers, as a foil

to distributed and coordinated attacks. Examples of such attacks and pre-cursors to attacks are

distributed denial of service attacks [33], distributed port scans and fragmented worms. This

is enabled by the increased sophistication of attackers, who are able to commandeer multiple

resources and attack a network in a distributed manner, so as to evade localized detection

techniques. A common feature of these attacks is that detection requires global information.

The communication cost of detecting such attacks is high and the bottleneck is the network

bandwidth, which is a few orders of magnitude smaller than memory bandwidth [2]. In response,

researchers have considered the design of distributed, collaborative intrusion detection systems

and several survey papers on this important subject have appeared recently, e.g [32], [22].
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A similar trend towards collaborative distributed systems is observed in the area of machine

learning, e.g. [15]. Machine learning systems can serve as a subsystem in an intrusion detection

system, but are also of interest in a host of other applications. Primitives provided in such systems

include gradient and stochastic gradient descent, map-reduce (for developing divide and conquer

strategies) and graph parallel primitives. The problem of reducing the communications overhead

in datacenter implementations of large scale machine learning problems has been addressed

in several works, e.g. [19]. As a specific example consider the design of a neural network

classifier for data that is distributed across many physical locations [18]. The focus in [18] is on

understanding the statistical performance of the proposed distributed learning algorithm—there

is no explicit accounting of the communication cost of the proposed algorithm. Our work aims

to fill this gap.

Finally, we would like to note that when detecting an attack in a large network, the first attack

is often very hard to detect. It is only after anomalous behavior is noted that an effort is made

to discover the mode of the attack, after which an attack signature is obtained for preventing

further spread. Thus, the availability of network data that precedes the attack is crucial for

discovering the mode of an unseen attack. Such data can take the form of counts of packets

with specific source, destination IP addresses, as in [13]. However, since uncompressed network

logs will consume a lot of network bandwidth, it makes sense to have available a compressed

representation of a network log. In the example of packet counts, lossy compression is an

acceptable and necessary step in reducing the network bandwidth requirements. The emphasis

on low delay is also important here. We may not have the luxury of accumulating data for a

month at each sensor node, but may wish to encode data daily.

The problem considered here has applications to the above-mentioned distributed systems

and our expectation is that the communication efficiencies obtained through their solution will

contribute to system efficiencies.

III. LATTICE SETUP

Our analysis is for lattices in dimension 2. We summarize here, some of the necessary and

relevant facts about two dimensional lattices. We will assume that generator matrix V of lattice

Λ is of full rank (the associated lattice is called a full rank lattice) and has the upper triangular
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Fig. 1. Voronoi region, Babai partition and three relevant vectors

form

V =

1 ρ cos θ

0 ρ sin θ

 (1)

where the columns of V are basis vectors for the lattice. The associated quadratic form is

f(x, y) = x2+2ρ cos θ xy+ρ2y2. It is known that this form is reduced if and only if 2|ρ cos θ| ≤

1 ≤ ρ2 and the three smallest values taken by f over (x, y) ∈ Z2 − {0} are 1, ρ2, and 1 −

2|ρ cos θ|+ ρ2 see e.g. Th. II, Ch. II, [7]. Based on a result due to Voronoi, Th. 10, Ch. 21, [8],

it follows that the relevant vectors, i.e. the vectors which determine the faces of the Voronoi

cell, are ±(1, 0), ±(ρ cos θ, ρ sin θ) and ±(ρ cos θ − 1, ρ sin θ). We thus consider lattices with

generator matrix V as above, with ρ ≥ 1. From an additional symmetry, and in order to avoid

indeterminate solutions we restrict θ such that 0 < ρ cos θ < 1/2. Performance at the endpoints

0 and 1/2 can be obtained by taking limits. More generally, the generator matrix of the lattice

is represented by matrix V with ith column vi, i = 1, 2, . . . , n. Thus Λ = {Vu, u ∈ Zn}. The

(i, j) entry of V is vi,j , thus vi = (v1i, v2i, . . . , vni). The Voronoi cell Vy is defined as the set of

all x for which y ∈ Λ is the closest lattice point. When y = 0, we will write V as shorthand

for V0.

A fundamental region of a lattice Λ is a set with the property that distinct points in the set

are distinct, modulo translations by lattice vectors. The volume of any fundamental region is

| detV |. The Voronoi cell Vy is a fundamental region for the lattice Λ. For the lattice Λ with

generator matrix (1), it is not hard to show that any translate of the rectangle [0, 1)×[0, ρ sin θ) is

also a fundamental region for Λ and that these are the only axis-aligned rectangular fundamental

regions for this lattice. Given a lattice Λ and a rectangular fundamental region R, a partition

of Rn of the form R + y, y ∈ Λ will be referred to as a rectangular fundamental partition
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of Λ. A simple method for obtaining a fundamental rectangular partition is to partition Rn into

rectangles for which u = (u1, u2, . . . , un) is constant, where

ui = [(xi −
n∑

j=i+1

vijuj)/vii], i = n, n− 1, . . . , 1, (2)

([x] is the nearest integer to x). This partition is referred to as the nearest-plane or Babai partition,

the lattice point

ynp(x) = Vu (3)

is referred to as the Babai point, the set of x mapped to y by (2) and (3) is called the Babai

cell associated with y, denoted By. The Babai cell at the origin B0 is abbreviated B.

IV. INTERACTIVE, NEAREST-PLANE, SINGLE ROUND OF COMMUNICATION

Stage-I 
Enc/Dec

Stage-I 
Enc/Dec

X1 X2

Stage-II 
Enc/Dec

Stage-II 
Enc/Dec

time

u1

u2

(w1,z1)

z2

ynp ynp

y(x) y(x)

Node 1 Node 2

Fig. 2. Two stages in the computation of y(x). At the end of Stage-I, both nodes have determined ynp(x). Stage-II then refines

the approximation. Shown here is the 12 order for Stage-II communication. In the 21 order for Stage-II communication, z2 is

sent before z1 and is calculated differently.

Our algorithm computes y(x) in two stages, as illustrated in Fig. 2. In the first stage, a Babai

partition of R2 is constructed. This is accomplished by first sending u2 from node-2 to node-1

and then sending u1 from node-1 to node-2 calculated according to (2). At the conclusion of this

stage of the protocol, both nodes have determined an approximate nearest lattice point, ynp(x),

thus localizing x to the Babai cell Bynp(x). In the second stage, we allow only a single round of

communication. This round consists of sending a bin index (w1, z1) from node-1 to node-2 and

another bin index z2 from node-2 to node-1. Computation of w1 and zi’s is explained later in this

section. Different results are obtained depending on the order in which the zi are communicated.
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Both possibilities are analyzed. At the end of the second stage, each node has determined a

better approximation to yv(x) than ynp(x). We call this common lattice point y(x)2.

Let E = {y(X) 6= yv(X)} and let Pe = PX(E) denote the error probability. The total number

of bits communicated in Stages I and II is denoted by RI , RII , respectively and Rsum = RI+RII .

Our objective is to determine the error probability as a function of Rsum.

Since X1 and X2 are assumed to be independent and the Babai cell satisfies By = B1
y × B2

y,

the pdf of X = (X1, X2) conditioned on the event {X ∈ By} or equivalently {Y = y} satisfies

pX|Y(x|y) = pX1|Y(x1|y)pX2|Y(x2|y).

A. Analysis of Rate in Stage-I

The Stage-I rate is given by H(U), where U = (U1, U2) and the Ui are obtained in (2). For

general probability distributions H(U1, U2) must be obtained computationally. However, when

the lattice is scaled by α (i.e. the generator matrix for the lattice is αV) and detV = 1 it is

easy to show that the Stage-I rate satisfies [5]

lim
α→0

(RI + 2 log2(α)) = h(pX1) + h(pX2). (4)

B. Analysis: Stage-II, 12 Order

We now describe the scheme for the 12 order for the second stage. Node-1 partitions B1 into

bins and sends a message to node-1 to indicate which bin x1 lies in, in effect partitioning B into

vertical rectangular strips. Node-2 partitions each vertical rectangular strip into at most three

parts using at most two horizontal cuts or thresholds3. The location of each cut is determined by

the location of the appropriate boundary wall of a Voronoi cell. A typical situation is illustrated

in Fig. 3. Here a rectangle is intersected by the boundary lines of the Voronoi cell V , and is

partitioned into three smaller rectangles. The partitioning of a rectangle into smaller rectangles is

determined by the optimum decoding or decision rule, which associates a lattice point with every

rectangle in the final partition. Consider a rectangle R and let y(R) be the lattice point that it

is decoded to. From elementary considerations it follows that y(R) = arg maxy′ PX(R ∩ Vy′).

2Our protocol excludes the possibility that the lattice points determined by each node at the end the the second stage are

different.
3We shall assume that a vertical strip never straddles a vertical wall of a Voronoi cell.
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Fig. 3. A typical vertical strip created by S1 and its partition into three parts by S2 (left). Probability distribution Q(x) which

underlies the calculation of H(U2|U1) is on the right.

Thus the optimum decision rule decodes region R to the lattice point whose Voronoi region has

the largest probability of intersection with R.

Assume that the upper and lower boundary lines of V are described by u(x) and l(x),

respectively, when x ∈ B. In case one or more of the Voronoi boundary lines is absent, u(·) and

l(·) coincide with the boundary of the Babai cell and the slopes are zero. Let R have width δ

and let α and β, both in [0, 1], be as shown in Fig. 3. Then

Pr[E|X ∈ R] ≈ 1

2
δ2pX1|X∈R(x1)

[
(α2 + (1− α)2)|u′(x1)|pX2|X∈R(u(x1))+

(β2 + (1− β)2)|l′(x1)|pX2|X∈R(l(x1))
]

≥ 1

4
δ2pX1|X∈R(x1)

[
|u′(x1)|pX2|X∈R(u(x1)) + |l′(x1)|pX2|X∈R(l(x1))

]
(5)

and equality holds when α = β = 1/2. This determines the best location of two horizontal cuts

for each vertical rectangular strip.

We now describe the partition of B1 in a hierarchical manner, using random variables W1 and
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Z1. The function |u′(x)| + |l′(x)| is constant on 2m + 1 sub-intervals4 of B1, for some m ≥ 0.

W1 describes the sub-interval that X lies in. The sub-interval indexed by w1 = 0 is special in

that |u′(x)|+ |l′(x)| is zero over this sub-interval and P (E|U = u,W1 = 0) = 0 for each u. No

further partitioning of a sub-interval W1 = 0 is required, and Stage-II communication ends. Each

subinterval W1 6= 0 is further partitioned into bins and the random variable Z1 describes the bin

index of the bin that X1 lies in. Thus each bin is indexed by (u, wi, i), where u is the index of

the Babai cell, wi is the sub-interval index, i is the bin index relative to the sub-interval, and

Pe =
∑
u

∑
w1

PU,W1(u, w1)P (E|U = u,W1 = w1)

= (1− PW1(0))
∑
u

∑
w1 6=0

PU,W1(u, w1)

(1− PW1(0))
P (E|U = u,W1 = w1) (6)

where P (E|U = u,W1 = w1) is given by averaging the minimum value achieved by (5) with

appropriate bin size δ.

The information rate from node-1 in Stage-II is H(W1, Z1|U). The sum information rate for

all communication (Stages I and II) is given by

Rsum = H(U)︸ ︷︷ ︸
RI

+H(Z1|W1,U) +H(W1|U)︸ ︷︷ ︸
RII,12

+H(Z2|Z1,W1,U)︸ ︷︷ ︸
RII,21

, (7)

where, for convenience, we mention again that U1 and U2 are the random variables associated

with communication in Stage-I, given by (2) and Z1, W1 and Z2 are random variables associated

with communication in Stage-II.

Since the quantization in Stage-II is assumed to be fine (for a lattice at any scale), we can obtain

useful approximations for H(Z1|U,W1). Specifically, for a realization of (U,W1) = (u, w1)

H(Z1|u, w1) =

Nu,w1∑
i=1

∫
Ii
pX1|U,W1(x) log2

1∫
Ii pX1|U,W1(t)dt

dx, (8)

where Nu,w1 , the number of bins and Ii, the ith bin of the w1th sub-interval of the Babai cell

indexed by u. Note that Ii may depend on (u, w1) though this is not reflected in the notation.

The partition constructed by node-2 is described next. Suppose x1 lies in the rectangle R =

Ii×B2. As shown in Fig. 3,R is partitioned into at most three rectangles labeledRj , j = −1, 0, 1.

4Some intervals may be of zero length. For the cases that our analysis is applied to m is either 1 or 2.
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Define the probability distribution Qu,w1(x1) = (Q−1, Q0, Q1), where Qj = PX2|X1(Rj|x1).

Node-2 sends H(Z2|Z1,U) bits to node-1 where

H(Z2|Z1,U) ≈
∑
u

∑
j

PU,W1(u, j)

Nu,j∑
i=1

H(Qu,w1(xi))py(xi,u)δi,u, (9)

where xi,u lies in the ith bin of the jth sub-interval of the Babai cell indexed by u, having

length δi,u.

In order to derive limiting expressions for (5)–(9), we follow the approach in [4], [9], [36]

and introduce the bin-length function δ(x) and the point density function ρ(x) = (Nδ(x))−1,

where N is the number of bins that a sub-interval is partitioned into and δ(x) is the length of

a bin that contains x. Observe that ρ(x) measures the density of bins at x within a sub-interval

and integrates to unity over that sub-interval. Wherever needed ρ will be indexed by the Babai

cell index u and sub-interval w1.

In terms of the point density function ρ(x) and

γu,w1(x) :=
|u′(x)|pX2|U,W1(u(x)|u, w1) + |l′(x)|pX2|U,W1(l(x)|u, w1)

4
(10)

we obtain

P (E|U = u,W1 = w1) ≈

 E
[

γu,w1 (X1)

ρu,w1 (X1)Nu,w1
|W1 = w1,U = u

]
, w1 6= 0

0, w1 = 0,
(11)

H(Z1|u, w1) ≈

 E
[
log
(

ρu,w1 (X1)Nu,w1

pX1|U,W1
(X1|u,w1)

)
|W1 = w1,U = u

]
, w1 6= 0,

0, w1 = 0,
(12)

and

lim
m→∞

H(Z2|Z1,W1,U) =
∑
u

PU(u)
∑
w1

PW1|U(w1|u)E [H(Qu,w1(X1)|W1 = w1,U = u] .

(13)

Observe that (13) does not depend on ρ.

We minimize Pe with respect to the sum rate Rsum in two steps. First we obtain a lower

bound on (11) through an application of Jensen’s inequality [12], [36], [10]. We follow this
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with another application of Jensen’s inequality to determine the optimal rate allocation R(u, w1).

Thus for w1 6= 0

P (E|U = u,W1 = w1) ≈

≈ E

[
exp

(
log

(
γu,w1(X1)

ρu,w1(X1)Nu,w1

))
|W1 = w1,U = u

]
≥ exp (E [log (γu,w1(X1)− log (ρu,w1(X1)Nu,w1)) |W1 = w1,U = u])

≈ exp (E [log (γu,w1(X1)) |U = u,W1 = w1]) exp(−H(Z1|u, w1)) exp(h(X1|U = u,W1 = w1)

(14)

and equality holds if and only if ρu,w1(x1)Nu,w1 = γu,w1(x1)/Ku,w1 , for some constant Ku,w1 .

Let

Au,w1 :=

 E [log (γu,w1(X1)) |U = u,W1 = w1] , w1 6= 0,

0, w1 = 0
(15)

and let

P̃ (u, w1) =
PU,W1(u, w1)

(1− PW1(0))
, w1 6= 0. (16)

From (6) it follows that

Pe ≥ (1− PW1(0))
∑
u

∑
w1 6=0

P̃ (u, w1) exp(Au,w1 −H(Z1|u, w1) + h(X1|u, w1))

≥ (1− PW1(0)) exp

(∑
u

∑
w1 6=0

P̃ (u, w1) (Au,w1 −H(Z1|u, w1) + h(X1|u, w1))

)

≥ (1− PW1(0)) exp

(∑
u

∑
w1 6=0

P̃ (u, w1) (Au,w1 + h(X1|u, w1))

)
exp

(
−H(Z1|U,W1)

(1− Pw1(0))

)
(17)

and equality holds when H(Z1|u, w1) = Au,w1 + h(X1|u, w1) +K for some constant K. From

here it follows directly that

lim
Rsum→∞

log

(
Pee

Rsum
(1−PW1

(0))

)
=

log(1− PW1(0)) + Ẽ[log γU,W1 + h(X1|u, w1)] + H(W1|U)
1−PW1

(0)
+ H(U)+H(Z2|Z1,U,W1)

1−PW1
(0)

, (18)

where Ẽ[·] is the expectation with respect to the probability distribution P̃ defined in (16) and

h(X1|u, w1) is the differential entropy of the probability density pX1|U,W1(x|u, w1).
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Remark 1. From (6) we see that in order to achieve Pe = 0 it is necessary that P (E|R(u, j, i)) =

0 for all R(u, j, i) which have positive probability. This is impossible unless the bin size (the

x1 dimension) is zero, which requires an infinite rate.

Remark 2. Conditions for convergence in (18) are less stringent than those required in the

analysis of quantizers under difference distortion measures since the error measure considered

here is the error probability. It suffices to assume that the marginal pdf’s satisfy smoothness

conditions (53(a)-(c)) in [9].

C. Special Case: 12 Order and X ∼ Unif(B0)

Fig. 4. Babai and Voronoi cells, with key points labeled. x1, x2 are the horizontal, vertical coordinates, resp. We have reduced

the clutter by labeling only one of a pair of vertices x, −x.

We now specialize the analysis to the simplest case where we assume that X is uniformly

distributed over B0. Thus H(U) = 0 in (18) and the remaining terms are derived in the sequel.

We note here that this analysis also applies in a limiting sense when applied to lattice αΛ and

α→ 0. The only modification required is that H(U) be computed using (4). Thus the analysis

presented here is applicable in the limiting case for general source distributions. The benefit is

that it allows us to study explicity, the dependence on geometric parameters of the Babai and

Voronoi cell.

The Voronoi cell V0 and Babai cell B0 are shown with all the significant boundary points

and intervals in Fig. 4. We identify four thresholds t−2 = (ρ cos θ − 1)/2, t−1 = (−ρ cos θ)/2,
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t1 = −t−1 and t2 = −t−2 and five intervals I−2 = (−1/2, t−2], I−1 = (t−2, t−1], I0 = (t−1, t1],

I1 = (t1, t2] and I2 = (t2, 1/2] with lengths L−2 = L2 = (1/2)ρ cos θ, L−1 = L1 = 1/2−ρ cos θ,

L0 = ρ cos θ, L = L0 + 2L1 + 2L2 = 1. Let H−2 = H2 = (1/2) cos θ/ sin θ. Note that H−2 =

H−2u + H−2l in Fig. 4. Let H−1 = H1 = cos θ(1 − 2ρ cos θ)/2 sin θ. Note that H−1 = H−1l in

Fig. 4. Let the height of the Babai cell be H = ρ sin θ. Thus

γ0,w1(x) =



H−2

4L−2H
= 1/(4ρ2 sin2 θ), x ∈ I−2(≡ w1 = −2)

H−1

4L−1H
= cos θ/(4ρ sin2 θ), x ∈ I−1(≡ w1 = −2)

0, x ∈ I0(≡ w1 = 0)

H1

4L1H
= cos θ/(4ρ sin2 θ), x ∈ I1(≡ w1 = 1)

H2

4L2H
= 1/(4ρ2 sin2 θ), x ∈ I2(≡ w1 = 2),

Then

Ẽ[log γU,W1 ] =
2∑

j=−2,j 6=0

Lj
1− L0

log
Hj

4HLj
(19)

H(W1|U) = −
2∑

j=−2

Lj logLj (20)

and

Ẽ[h(X1|u, w1)] =
2∑

j=−2,j 6=0

Lj
1− L0

logLj (21)

Let random variable W2 which takes values j = −2,−1, 0, 1, 2 with probability Hj/H . We thus

obtain

Pe exp

(
Rsum

1− PW1(0)

)
= (22)

=
(1−PW1

(0))

4

(
1

PW1
(0)

) PW1
(0)

1−PW1
(0)

(∏2
j=−2,j 6=0

(
PW2

(0)

PW1
(0)

) PW1
(0)

1−PW1
(0)

)
exp

{
E[H(Q(X1))]
(1−PW1

(0))

}
= (1−L0)

4

(
1
L0

) L0
1−L0

(∏2
j=−2,j 6=0

(
Hj

LjH

) Lj
1−L0

)
exp

{
E[H(Q(X1))]

(1−L0)

}
. (23)

It is worth noting that for the special case considered here, namely, X uniformly distributed

on B0, (23) can be obtained more directly by partitioning I−2 into N2 equal-length intervals,

I−1 into N1 equal-length intervals, I0 into 1 interval, I1 into N1 equal-length intervals and I2

into N2 equal-length intervals [31].
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D. Interactive: Single Round, Reversed Steps, X ∼ Unif(B0)

Analysis is now presented for 21 order of communication. The general formula (23) continues

to apply here, but with W2, Z2 and X2 replacing W1, Z1, and X1, respectively. We thus derive

an expression for the special case with X uniformly distributed on B0, since this captures the

essential geometric differences between the two orderings of communication in Stage-II.

The support for X2 is partitioned into 3 subintervals J0 := (τ−1, τ1], J−1 := (−ρ sin θ/2, τ−1]

and J1 = (τ1, ρ sin θ/2] and the bin that X2 lies in is communicated to node-1 by random

variable W2. Conditioned on W2 6= 0, random variable Z2 indicates a bin for interval Jj , j 6= 0

that X2 lies in. Also let H = ρ sin θ, the vertical (X2) dimension of B0 and Hi = length(Ji),

i = −1, 0, 1 as in Fig. 4.

Node-2 sends W2, Z2, the index of the bin that X2 lies in, and thus partitions B0 into horizontal

strips. Node-1 then partitions each horizontal strip into at most three parts using at most two

vertical cuts or thresholds, referred to as the left and right thresholds, and sends Z1 to node-

2. For a given x2, let P−1(x2) be the probability that X1 lies to the left of the left threshold

(Z1 = −1), P1(x2) the probability that X1 lies to the right of the right threshold (Z1 = 1)

and P0(x2) the probability that X1 lies in between the two thresholds (Z1 = 0). Let P (x) =

(P−1(x), P0(x), P1(x)). Then

lim
m→∞

H(Z1|Z2,W2, U1, U2) = E[H(P (X2)]. (24)

It follows that

lim
N→∞

Pe,II2
Rsum/(1−PW2

(0)) =
1−H0

4H

(
H

H0

) H0
1−H0

(
1∏

j=−1,j 6=0

HLj
Hj

)
exp

{
E[H(P (X2))]

(1−H0)

}
.

(25)

E. The Optimum Offset

We consider the possibility that the Babai partition constructed on x−x0 for some fixed offset

vector x0 = (x01, x02) might lead to improved performance. Notice that the lattice and Voronoi

partition remain unchanged; only the rectangular partition has shifted. It suffices to restrict x0 to

the rectangle
∏n

i=1[−vii/2, vii/2) and with this restriction y ∈ Bx0(y). For 2D lattice considered

here x0 ∈ [−1/2, 1/2)× [−(ρ/2) cos θ, (ρ/2) cos θ).

First consider the 12 order to communication. We have already shown that the error probability

decreases as 2−Rsum/(1−L0) and thus the maximum rate of decay is obtained by choosing an
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Fig. 5. Shifted Babai cell (red) and Voronoi cells (blue) and lattice points ’+’. Observe that the lattice is not shifted and a

lattice point remains at the center of every Voronoi cell. Also, the lattice point y lies in the shifted Babai cell because of our

restriction on x0. A single Babai cell will intersect at most six Voronoi cells.

L=1

H
d1 d2

d3

d4

H1

H-1

H0

Fig. 6. An illustration of the Voronoi cell V0 an offset Babai cell (dashed rectangle) and the Babai cell with zero offset (solid

rectangle).

offset x0 for which L0 is maximized. In terms of the distances shown in Fig. 6, L0 = 1 −

max(d1, d4)−max(d2, d3) and d1, ..., d4 depend on the vertical offset x02. For 0 < d1 ≤ ρ cos θ,

d2 = d1(1−ρ cos θ)
ρ cos θ

, d3 = ρ cos θ − d1 and d4 = (1−ρ cos θ)
ρ cos θ

(ρ cos θ − d1). Note that offset x0 = 0

corresponds to d1 = (1/2)ρ cos θ. L0 is maximized for any d1 which satisfies (ρ cos θ)2 ≤ d1 ≤

ρ cos θ(1−ρ cos θ), as shown in Fig. 7. Thus x0 = 0 is optimal in terms of rate of decay. A further

optimization is possible in terms of the constant term. This has been calculated numerically and

is shown in Fig. 7(b). For the 12 order of communication d1 = ρ cos θ(1− ρ cos θ) is optimum

(for all θ in (π/3, π/2)) and results in significant improvements in the error probability.

A similar, but simpler analysis for the reverse order shows that in this case the zero offset is
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Fig. 7. Variation with offset for θ = 2π/5 and Rsum = 4.0 bits for 12 order of communication. (a) L0 as a function of d1,

(b) Pe given in (25) as a function of d1 shows that d1 = ρ cos θ(1− ρ cos θ) is optimum. (c) 21 order of communication. Pe

is minimum at zero offset.

indeed optimal, as shown in Fig. 7(c).

V. INTERACTIVE: INFINITE ROUNDS

Fig. 8. Red solid lines show partition after the first round of communication. Dashed lines are created in the second round of

communication.
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We now analyze the interactive model in which an infinite number of communication rounds

are allowed. We provide an analysis under the assumption that X is uniformly distributed over

B0. As we have noted earlier, the analysis with this restriction also applies when the lattice

is fine, i.e. when | detV |, the volume of a fundamental region is small. The construction and

performance analysis is presented is described in Sec. V-A. The optimum offset is investigated

in Sec. V-B.

A. Interactive:Infinite rounds: A Bit-Excahnge Protocol

Node-2 communicates first. In Round-1, Node-2 partitions the support of X2 into three

intervals as in Sec. IV-D (see Figs. 8 and 4), J−1, and J0, and J1. Let random variable W2

be the index of the interval in which X2 lies. In Round-1, upon receiving W2 and if W2 = 1,

Node-1 partitions the support of X1 into three intervals I−1 = (−1/2, t−2], I0 = (t−2, t1]

and I1 = (t1, 1/2] (see Fig. 4). If W2 = −1, the support of X2 is partitioned into intervals

−I1,−I0,−I−1. If W2 = 0, no partitioning step is taken. Random variable W1 describes the

interval in which X1 lies. Let Pr(W2 = i) =: Qi, i = −1, 0, 1. Let Pi = Pr(W1 = i|W2 = 1),

i = −1, 0, 1. Let Q = (Q0, Q1, Q2) and P = (P0, P1, P2).

We assume that for every round, upon sending Ui, Node-i updates Xi by subtracting the lower

endpoint of the interval that it lies in.

The partition of B0 into rectangular cells after a single, and after two rounds of communication

is shown in Fig. 8. Define a rectangular cell to be error-free if its interior does not contain a

boundary of V0. Of the seven rectangles in the partition at the conclusion of Round-1, all but four

are error-free. If X = (X1, X2) lies in an error-free rectangle, communication halts after Round-1.

Else a second round of communication occurs, during which a total of 2 bits are communicated.

This process of partitioning and communication continues until each node determines that X lies

in an error free rectangle of the current partition. When the algorithm halts, Pe = 0. Let N(X),

R(X) denote the number of rounds, and number of bits communicated, respectively, when the

algorithm halts. Let R̄ = E[R(X)] and N̄ = E[N(X)] denote averages over X.

Theorem 1. For the interactive model with unlimited rounds of communication, a nearest plane

partition can be transformed into the Voronoi partition using, on average, a finite number of

bits and rounds of communication. Specifically,

R̄ = H(Q) + (1−Q0)H(P ) + 4(1− P0)(1−Q0) (26)
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and

N̄ = 1 + 2(1− P0)(1−Q0).

Proof. We assume that an optimum entropy code is used (thus if W2 = 0, the codeword length

is log2(1/Q0) bits). The term H(Q)+(1−Q0)H(P ) in (26) is the cost of resolving the Round-1

partition. At the conclusion of Round-1, if X belongs to a region which is not error-free, then

the average number of bits transmitted is obtained by the following argument. At the conclusion

of Round-1, there are two kinds of error rectangles, determined by the sign of the slope of the

boundary of V0 in the rectangle. Note that error rectangles are designed so that the boundary

of V0 is a diagonal of the corresponding rectangle. Let an error rectangle have length L and

height H . If the slope is positive, construct the binary expansion 1 − x1/L =
∑∞

i=1 bi2
−i, else

construct x1/L =
∑∞

i=1 bi2
−i. In both cases construct the binary expansion x2/H =

∑∞
i=1 ci2

−i.

From the independence and uniformity of X1 and X2 it follows that the bits Bi and Ci are

independent unbiased Bernoulli random variables. Further, the algorithm halts after n rounds,

with 2n total bits communicated if and only if Bi 6= Ci, i < n and Bn = Cn. Thus, given X in

an error rectangle, Pr(R(X) = 2n) = Pr(N(X) = n) = 2−n. The result follows immediately

by computing the average.

B. Infinite Rounds: Optimum Offset for the Babai Partition

With reference to Fig. 6, define the probability distributions Q = [Q−1, Q0, Q1], with Qi =

Hi/H , i 6= 0, Q0 = (1 − (Q1 + Q−1), P1 = [P1,−1, P1,0, P1,1] = [d1/L, 1 − (d1 + d2)/L, d2/L]

and P−1 = [P−1,−1, P−1,0, P−1,1] = [d4/L, (1 − (d4 + d3)/L, d3/L]. In terms of parameters for

the basis, H = ρ sin θ, L = 1, H1 = d1(1 − ρ cos θ)/(ρ sin θ), H−1 = d3(1 − ρ cos θ)/(ρ sin θ)

and for 0 < d1 ≤ ρ cos θ, d2 = d1(1−ρ cos θ)
ρ cos θ

, d3 = ρ cos θ − d1 and d4 = (1−ρ cos θ)
ρ cos θ

(ρ cos θ − d1)

(replicated here for convenience).

The sum rate for Stage-II communication is given by

RII = H(Q) +Q1H(P1) +Q−1H(P−1) + (Q1(1− P1,0) +Q−1(1− P−1,0))4 (27)

The sum rate plotted in in Fig. 9, for the offset Babai partition shows that zero offset is

optimal, consistent with the result for the 21 single-round result.

Remark 3. The communication strategy is implicit in the proof. Note that the finite value for R̄

is because of the rapid decrease with n of the probability of halting at n rounds.
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2.65

Fig. 9. Variation of rate with d1 shows that zero offset is optimum for 21 order infinite round communication for ρ = 1 and

θ = 2π/5. The vertical line shows d1 at zero offset.

Remark 4. This result has interesting implications when viewed in the context of distributed

classification problems. Suppose we have an optimum two-dimensional classifier with separating

boundaries that are not axis aligned and also a suboptimal classifier with separating boundaries

that are axis aligned, e.g. a k-d tree. We expect the communication complexity of refining the

approximate rectangular classifier to the optimum classifier to be finite.

VI. NUMERICAL RESULTS AND DISCUSSION
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Fig. 10. Variation of Pe,II with θ for the single-round interactive model, 12 (top), 21 (middle) with R = 4.0 bits. R̄ = E[R]

for the infinite-round interactive model is shown in the bottom panel for ρ = 1.

Performance results for all models are summarized in Fig. 10, for ρ = 1 and π/3 < θ < π/2.

Under the 1-round interactive model the hexagonal lattice is not the worst case for the 12
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sequence, but is for the 21 sequence. The large gap in performance at the same rate for the 12

and 21 sequences highlights the importance of selecting the sequence of order in which nodes

communicate in this case. Under the infinite round interactive model, the hexagonal lattice is

the worst case, with R̄ = 2.42 bits.

VII. SUMMARY AND CONCLUSIONS

For the nearest lattice point problem, we have considered the problem of interactively comput-

ing the nearest lattice point for a lattice in two dimensions. A two-party model of communication

is assumed and expressions for the error probability have been obtained for a single round of

communication (i.e. two messages). We have also considered an unbounded number of rounds

of communication and shown that it is possible to achieve zero probability of error with a finite

number of bits exchanged on average. In almost all cases, our results indicate that lattices which

are better for quantization or for communication have a higher communication complexity.
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